Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme

Aus ZUM Projektwiki

3) Winkelsumme im Viereck

Entdecken

- Zeichne ein beliebiges Viereck, zeichne die Winkel mit unterschiedlichen Farben ein und schneide es aus (vgl. Bild unten). Reiße nun die Ecken ab und lege sie zusammen. Was fällt dir auf?
- Lass dir nun die Winkelgrößen anzeigen und berechne die Winkelsumme. Was fällt dir nun auf?

- Verändere die Form des Vierecks, indem du die Punkte verschiebst und berechne jeweils die Winkelsumme. Kannst du deine Vermutung bestätigen?

https://www.geogebra.org/m/u5ggpyvz

GeoGebra


GeoGebra




Winkelsumme im Viereck
Fülle die Lücken im nachfolgenden Merksatz und übertrage ihn dann in dein Heft. Denke an die Überschrift.

In jedem Viereck beträgt die Winkelsumme 360°()

Also gilt: + + + = 360°().


Du kannst das Grad-Zeichen ° auf dem iPad eingeben, indem du lange auf die Ziffer 0 drückst.


Übung 1
Löse Buch S. 66 Nr. 1, 2, 3 und 4

Nutze Eigenschaften der Winkel im symmetrischen Trapez: Benachbarte Winkel sind gleich groß. Also ist β = α = 45° und γ = δ.
45° + 45° + 2γ = 360°

Löse die Gleichung nach γ auf.

Nutze Eigenschaften der Winkel im Parallelogramm: Gegenüberliegende Winkel sind gleich groß. Also ist α = γ = 105° und β = δ.
105° + 105° + 2β = 360°

Löse die Gleichung nach β auf.
Zeichne ein symmetrisches Trapez. Wo muss der Winkel 110° liegen? Schau eventuell die Skizze von Nr. 2a an.

β ist ein Nebenwinkel zu 50°. Nebenwinkel ergänzen sich zu 180°.
50 ° + β = 180°.
Löse die Gleichung nach β auf.

Nutze den Winkelsummensatz für die Berechnung von δ.
γ ist ein Nebenwinkel zu 60°. Nebenwinkel ergänzen sich zu 180°.
α ist ein Nebenwinkel zu 100°,γ ist ein Nebenwinkel zu 80°, Nebenwinkel ergänzen sich zu 180°.
γ und β sind Nebenwinkel, α ist ein Scheitelwinkel zu 140°. Berechne δ mit der Winkelsumme.