Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
K (Formel ergänzt)
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 30: Zeile 30:
{{#ev:youtube|w4SIXMBb0Ak|800|center}}<br><br>
{{#ev:youtube|w4SIXMBb0Ak|800|center}}<br><br>
<br>
<br>
Eine andere Möglichkeit ist die Berechnung mit Hilfe der sognenannten <span style="color:red">'''Mittellinie'''</span>. Hier ein Video zur Erklärung.
Eine andere Möglichkeit ist die Berechnung mit Hilfe der sognenannten <span style="color:green">'''Mittellinie'''</span>. Hier ein Video zur Erklärung.
{{#ev:youtube|wMLQ89-_qUs|800|center}}<br><br>
{{#ev:youtube|wMLQ89-_qUs|800|center}}<br><br>


{{Box|1=Flächeninhalt und Umfang des Trapezes|2=[[Datei:Trapez allgemein.png|rechts|rahmenlos]]<br>
<nowiki>{{Box|1=Flächeninhalt und Umfang des Trapezes|2=</nowiki>[[Datei:Trapez allgemein.png|rechts|rahmenlos]]<br>
Sind die a und c die parallelen Seiten des Trapezes und h die Höhe, wird der Flächeninhalt A eines Trapezes so berechnet:<br>
Sind die a und c die parallelen Seiten des Trapezes und h die Höhe, wird der Flächeninhalt A eines Trapezes so berechnet:<br>
'''A = <math>\frac{\text{(a+c)h}}{\text{2}}</math>''' oder '''A = <math>\frac{\text{(a+c)}}{\text{2}}</math>∙h'''<br> oder <span style="color:red">'''A = <math>m ∙ h'''</span>
'''A = <math>\frac{\text{(a+c)h}}{\text{2}}</math>''' oder '''A = <math>\frac{\text{(a+c)}}{\text{2}}</math>∙h'''<br> oder <span style="color:green">'''A = m ∙ h'''</span>


Der Umfang u eines Trapezes wird berechnet mit<br>
Der Umfang u eines Trapezes wird berechnet mit<br>
Zeile 63: Zeile 63:
<div class="grid">
<div class="grid">
<div class="width-1-2">Umstellen nach der Seite a:<br>
<div class="width-1-2">Umstellen nach der Seite a:<br>
A = <math>\frac{\text{a+c}}{\text{2}}</math>∙h &nbsp;&nbsp;&#124;∙2<br>
A = <math>\frac{\text{a+c}}{\text{2}}</math>∙h &nbsp;&nbsp;&#124;∙2<br>'''
2∙A = (a+c)∙h  &nbsp;&nbsp;&#124;:h<br>
2∙A = (a+c)∙h  &nbsp;&nbsp;&#124;:h<br>
<math>\frac{\text{2A}}{\text{h}}</math> = a+c  &nbsp;&nbsp;&#124;-c<br>
<math>\frac{\text{2A}}{\text{h}}</math> = a+c  &nbsp;&nbsp;&#124;-c<br>
Zeile 69: Zeile 69:


Stelle die Formel entsprechend nach c um.<br>
Stelle die Formel entsprechend nach c um.<br>
</div>
 
  <div class="width-1-2">Umstellen nach der Höhe:<br>
  <div class="width-1-2">Umstellen nach der Höhe:<br>
A = <math>\frac{\text{a+c}}{\text{2}}</math>∙h &nbsp;&nbsp;&#124;∙2<br>
A = <math>\frac{\text{a+c}}{\text{2}}</math>∙h &nbsp;&nbsp;&#124;∙2<br>
2∙A = (a+c)∙h  &nbsp;&nbsp;&#124;:(a+c)<br>
2∙A = (a+c)∙h  &nbsp;&nbsp;&#124;:(a+c)<br>
<math>\frac{\text{2A}}{\text{a+c}}</math> = h  <br>
<math>\frac{\text{2A}}{\text{a+c}}</math> = h  <br>
</div>
</div>
</div>



Version vom 6. März 2022, 07:33 Uhr


4.3) Trapez: Umfang und Flächeninhalt

1) Höhe im Trapez

Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein.

Trapez Höhe 1.png
Trapez Höhe 2.png
Trapez Höhe 3.png


Übung 1: Höhe im Trapez
Kennzeichne auf dem AB jeweils die parallelen Seiten und zeichne die Höhe des Trapezes ein.

2) Formeln herleiten: Flächeninhalt A und Umfang u

Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Trapezes herzuleiten. Notiere deine Ideen.

GeoGebra





Eine andere Möglichkeit ist die Berechnung mit Hilfe der sognenannten Mittellinie. Hier ein Video zur Erklärung.



{{Box|1=Flächeninhalt und Umfang des Trapezes|2=

Trapez allgemein.png


Sind die a und c die parallelen Seiten des Trapezes und h die Höhe, wird der Flächeninhalt A eines Trapezes so berechnet:
A = oder A = ∙h
oder A = m ∙ h

Der Umfang u eines Trapezes wird berechnet mit
u = a + b + c + d.|3=Arbeitsmethode}}


Übung 2
Löse die nachfolgenden Learningapps. Schreibe die Aufgaben strukturiert in dein Heft.



Übung 3

Löse Buch

  • S. 92 Nr. 1
  • S. 92 Nr. 2a,c


3) Formeln umstellen



Umstellen der Formel

Um die Länge einer der Seiten a und c oder der Höhe zu berechnen, muss die Formeln für den Flächeninhalt umgestellt werden.
1. Stelle die Flächeninhaltsformel um nach den Seitenlängen a und c.


2. Stelle die Flächeninhaltsformel nach der Höhe um.
Umstellen nach der Seite a:

A = ∙h   |∙2
2∙A = (a+c)∙h   |:h
= a+c   |-c
- c = a

Stelle die Formel entsprechend nach c um.

Umstellen nach der Höhe:

A = ∙h   |∙2
2∙A = (a+c)∙h   |:(a+c)
= h


Übung 4: Formel umstellen
Löse die nachfolgende LearningApp. Schreibe die Aufgabe strukturiert in dein Heft.



Übung 5

Löse Buch

  • S. 92 Nr. 5
  • S. 96 Nr. 4
Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann ein und berechne.

4) Anwendungsaufgaben

Übung 6: Anwendungsaufgaben zu Trapezen

Löse die Anwendungsaufgaben übersichtlich. Notiere zunächst die gegebenen Größen. Zeichne eine Skizze und beschrifte diese. Überlege, was gesucht ist. Unterscheide zwischen Flächeninhalt A(innen drin) und Umfang u (drum herum).

  • S. 92 Nr. 6
  • S. 92 Nr. 7
  • S. 92 Nr. 8