Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
K (Navigation)
Markierung: 2017-Quelltext-Bearbeitung
Zeile 1: Zeile 1:
SEITE IM AUFBAU!
SEITE IM AUFBAU!
{{Navigation|[[Buss-Haskert/Vierecke und Dreiecke| Einstieg und Vorwissen]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften|1) Vierecke und ihre Eigenschaften <br> 2) Haus der Vierecke]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Winkelsumme|3) Winkelsumme im Viereck]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4) Umfang und Flächeninhalt]]<br>
{{Fortsetzung|vorher=zurück zur Startseite|vorherlink=Buss-Haskert/Vierecke und Dreiecke}}
{{Navigation verstecken|[[Buss-Haskert/Vierecke und Dreiecke| Einstieg und Vorwissen]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften|1) Vierecke und ihre Eigenschaften <br> 2) Haus der Vierecke]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Winkelsumme|3) Winkelsumme im Viereck]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4) Umfang und Flächeninhalt]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4.1) Quadrat und Rechteck]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4.1) Quadrat und Rechteck]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Parallelogramm|4.2) Parallelogramm]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Parallelogramm|4.2) Parallelogramm]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez|4.3) Trapez]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez|4.3) Trapez]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Dreieck|4.4) Dreieck]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Dreieck|4.4) Dreieck]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Drachen|4.4) Drachen]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Drachen|4.4) Drachen]]
*[[Buss-Haskert/Vierecke und Dreiecke/Zusammengesetzte Figuren|4.5) Zusammengesetzte Figuren]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Zusammengesetzte Figuren|4.5) Zusammengesetzte Figuren]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Bunte Mischung|4.6) Bunte Mischung]]<br>
*[[Buss-Haskert/Vierecke und Dreiecke/Bunte Mischung|4.6) Bunte Mischung]]<br>

Version vom 12. November 2020, 14:08 Uhr

SEITE IM AUFBAU!

4) Umfang und Flächeninhalt von Vierecken und Dreiecken

In diesem Kapitel leitest du die Formeln für den Umfang und den Flächeninhalt für die besonderen Vierecke und für Dreiecke her. Notiere alle Formeln in deinem Heft der Vierecke.

Beginne mit der Wiederholung der Formeln für das Quadrat und Rechteck.



4.1) Quadrat und Rechteck: Umfang und Flächeninhalt

Quadrat und Rechteck

Stelle beim nachfolgenden GeoGebra-Applet mithilfe der Schieberegler die Länge und Breite so ein, dass du zunächst ein Quadrat betrachtest!
Wiederhole: Wie kannst du den Flächeninhalt berechnen?

Stelle danach verschiedene Rechtecke ein.
Wiederhole: Wie kannst du den Flächeninhalt berechnen?
GeoGebra


Umfang und Flächeninhalt von Quadrat und Rechteck
Bearbeite das nachfolgende Quiz und übertrage den Merksatz anschließend in dein Heft. Denke an die passenden Skizzen.
Notiere die Formeln auch in deinem Heft der Vierecke.

QUADRAT
Quadrat allgemein.png
Flächeninhalt A = a∙a
                       =
Umfang        u = 4∙a

RECHTECK Rechteck allgemein.png
Flächeninhalt A = a∙b
Umfang    u = 2a + 2b = 2(a+b) .


Übung 1
Flächeninhalt oder Umfang - Was ist gesucht? Löse die nachfolgende LearningApp.


Übung 2
Löse die nachfolgenden LearningApps. Schreibe die Aufgaben dazu strukturiert in dein Heft.







Übung 3
Löse S. 83 Nr. 4 und 5.

Da die Seitenlänge gesucht ist, musst du die Formel umstellen:

u = 4∙a

Welche Zahl mit sich selbst multipliziert ergibt also 36?

Erinnerung: Quadratzahlen!

Da die Seitenlänge b gesucht ist, musst du die Formel umstellen:

A = a∙b

Da die Seitenlänge b gesucht ist, musst du die Formel umstellen:

u = 2∙(a + b)


Übung 4

Nachdenkaufgabe: Löse Buch

  • S. 90 Nr. 13
Nutze als Hilfe das nachfolgende Applet: Verschiebe den Punkt und beobachte, was mit dem Flächeninhalt und dem Umfang des Rechtecks geschieht. Notiere und erkläre.
GeoGebra