Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierungen: Zurückgesetzt 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
{{Navigation | {{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | ||
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]] | |||
{{Navigation|[[Benutzer:Buss-Haskert/Vierecke und Dreiecke| Einstieg und Vorwissen]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften|1) Vierecke und ihre Eigenschaften <br> 2) Haus der Vierecke]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Winkelsumme|3) Winkelsumme im Viereck]]<br>[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4) Umfang und Flächeninhalt]]<br> | |||
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4.1) Quadrat und Rechteck]]<br> | *[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt|4.1) Quadrat und Rechteck]]<br> | ||
*[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Parallelogramm|4.2) Parallelogramm]]<br> | *[[Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Parallelogramm|4.2) Parallelogramm]]<br> |
Aktuelle Version vom 20. November 2024, 16:12 Uhr
Einstieg und Vorwissen
1) Vierecke und ihre Eigenschaften
2) Haus der Vierecke
3) Winkelsumme im Viereck
4) Umfang und Flächeninhalt
1) Vierecke und ihre Eigenschaften
2) Haus der Vierecke
3) Winkelsumme im Viereck
4) Umfang und Flächeninhalt
- 4.1) Quadrat und Rechteck
- 4.2) Parallelogramm
- 4.3) Dreieck
- 4.4) Trapez
- 4.5) Drachen
- 4.6) Zusammengesetzte Figuren
- 4.7) Bunte Mischung
3) Winkelsumme im Viereck
Originallink https://www.geogebra.org/m/u5ggpyvz
Originallink https://www.geogebra.org/m/umjjypth
In jedem Viereck beträgt die Winkelsumme 360°()
Du kannst das Grad-Zeichen ° auf dem iPad eingeben, indem du lange auf die Ziffer 0 drückst.
Nutze Eigenschaften der Winkel im symmetrischen Trapez: Benachbarte Winkel sind gleich groß. Also ist β = α = 45° und γ = δ.
45° + 45° + 2γ = 360°
Nutze Eigenschaften der Winkel im Parallelogramm: Gegenüberliegende Winkel sind gleich groß.
Also ist α = γ = 105° und β = δ.
105° + 105° + 2β = 360°
Zeichne ein symmetrisches Trapez. Wo muss der Winkel 110° liegen? Schau eventuell die Skizze von Nr. 2a an.
β ist ein Nebenwinkel zu 50°. Nebenwinkel ergänzen sich zu 180°.
50 ° + β = 180°.
Löse die Gleichung nach β auf.
γ ist ein Nebenwinkel zu 60°. Nebenwinkel ergänzen sich zu 180°.
α ist ein Nebenwinkel zu 100°,γ ist ein Nebenwinkel zu 80°, Nebenwinkel ergänzen sich zu 180°.
γ und β sind Nebenwinkel, α ist ein Scheitelwinkel zu 140°. Berechne δ mit der Winkelsumme.