Benutzer:Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 64: Zeile 64:
===1.2) Rechteck===
===1.2) Rechteck===
<br>
<br>
Originallink https://www.geogebra.org/m/ruxvjneq
<ggb_applet id="zah5mrby" width="831" height="661" border="888888" />
<ggb_applet id="zah5mrby" width="831" height="661" border="888888" />
Applet von Kubik<br>
<small>Applet von Kubik</small><br>
 
Originallink https://www.geogebra.org/m/ZteNVhb6
<ggb_applet id="ZteNVhb6" width="950" height="650" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br>
<ggb_applet id="ZteNVhb6" width="950" height="650" border="888888" /><br><small>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)</small><br>
<br>
<br>
Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br>
Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br>
Zeile 77: Zeile 78:
Sprinteraufgabe:
Sprinteraufgabe:
Konstruiere ein Rechteck mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Rechteck bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.  
Konstruiere ein Rechteck mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Rechteck bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.  
<div class="grid">
{{Lösung versteckt|1=1.Zeichne die Punkte A und B beliebig.|2=1. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A und B beliebig.|2=1. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=2. Zeichne die Gerade f durch A und B.|2=2. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=2. Zeichne die Gerade f durch A und B.|2=2. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=3. Zeichne eine senkrechte Gerade g zu f durch B.|2=3. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=3. Zeichne eine senkrechte Gerade g zu f durch B.|2=3. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=4. Zeichne eine senkrechte Gerade h zu f durch A.|2=4. Schritt|3=Verbergen}}
</div>
{{Lösung versteckt|1=5. Zeichne den Punkt C auf g.|2=5. Schritt|3=Verbergen}}
<div class="grid">
{{Lösung versteckt|1=6. Zeichne eine senkrechte Gerade i zu g durch C.|2=6. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=4. Zeichne eine senkrechte Gerade h zu f durch A.|2=4. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=7. Schnittpunkt D ist der Schnittpunkt der Geraden i mit der Geraden h.|2=7. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=5. Zeichne den Punkt C auf g.|2=5. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=8. Vieleck ABCD.|2=8. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=6. Zeichne eine senkrechte Gerade i zu g durch C.|2=6. Schritt|3=Verbergen}}</div>
   
</div>
<div class="grid">
<div class="width-1-3">{{Lösung versteckt|1=7. Schnittpunkt D ist der Schnittpunkt der Geraden i mit der Geraden h.|2=7. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=8. Vieleck ABCD.|2=8. Schritt|3=Verbergen}}</div>
  <div class="width-1-3"></div>
</div>
<br>
<br>
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Rechteck sichtbar ist und die Punkte und Strecken umbenennen.<br>
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Rechteck sichtbar ist und die Punkte und Strecken umbenennen.<br>
Originallink https://www.geogebra.org/m/kwgdfu2h
<ggb_applet id="kwgdfu2h" width="1154" height="693" border="888888" /><br>
Und nun bist du dran...<br>
Originallink https://www.geogebra.org/m/kaqh7yun
<ggb_applet id="azx2crmg" width="700" height="500" border="888888" />


<ggb_applet id="kwgdfu2h" width="1154" height="693" border="888888" /><br>
Und nun bist du dran...
<ggb_applet id="saktuckb" width="1520" height="732" border="888888" /><br>


===1.3) Parallelogramm===
===1.3) Parallelogramm===
<br>
<br>
 
Originallink https://www.geogebra.org/m/VzUhEXrz
<ggb_applet id="VzUhEXrz" width="1500" height="900" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br>
<ggb_applet id="VzUhEXrz" width="1500" height="900" border="888888" /><br><small>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)</small><br>
<br>
<br>
Zeichne ein Parallelogramm in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br>
Zeichne ein Parallelogramm in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br>
Zeile 112: Zeile 109:
Sprinteraufgabe:
Sprinteraufgabe:
Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
<div class="grid">
{{Lösung versteckt|1=1.Zeichne die Punkte A, B und C beliebig.|2=1. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A, B und C beliebig.|2=1. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=2. Zeichne die Gerade f durch A und B.|2=2. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=2. Zeichne die Gerade f durch A und B.|2=2. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=3. Zeichne die Gerade g durch B und C.|2=3. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=3. Zeichne die Gerade g durch B und C.|2=3. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=4. Zeichne eine parallele Gerade h zu f durch C.|2=4. Schritt|3=Verbergen}}
</div>
{{Lösung versteckt|1=5. Zeichne eine parallele Gerade i zu g durch A.|2=5. Schritt|3=Verbergen}}
<div class="grid">
{{Lösung versteckt|1=6. Schnittpunkt D ist der Schnittpunkt der Gerade i mit der Geraden h.|2=6. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=4. Zeichne eine parallele Gerade h zu f durch C.|2=4. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=7. Vieleck ABCD.|2=7. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=5. Zeichne eine parallele Gerade i zu g durch A.|2=5. Schritt|3=Verbergen}}</div>
 
<div class="width-1-3">{{Lösung versteckt|1=6. Schnittpunkt D ist der Schnittpunkt der Gerade i mit der Geraden h.|2=6. Schritt|3=Verbergen}}</div>
</div>
<div class="grid">
<div class="width-1-3">{{Lösung versteckt|1=7. Vieleck ABCD.|2=7. Schritt|3=Verbergen}}</div>
<div class="width-1-3"></div>
<div class="width-1-3"></div>
</div>
<br>
<br>
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Parallelogramm sichtbar ist und die Punkte und Strecken umbenennen.<br>
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Parallelogramm sichtbar ist und die Punkte und Strecken umbenennen.<br>


 
Originallink https://www.geogebra.org/m/h3bcpc6g
<ggb_applet id="h3bcpc6g" width="700" height="445" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br>
<ggb_applet id="h3bcpc6g" width="700" height="445" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br>


Und nun bist du dran...
Und nun bist du dran...<br>
<ggb_applet id="saktuckb" width="1520" height="732" border="888888" /><br>
Originallink https://www.geogebra.org/m/kaqh7yun
<ggb_applet id="azx2crmg" width="700" height="500" border="888888" />




===1.4) Raute (Rhombus)===
===1.4) Raute (Rhombus)===
<br>
<br>
Originallink https://www.geogebra.org/m/q4CutSVT
<ggb_applet id="q4CutSVT" width="1250" height="800" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br>
<ggb_applet id="q4CutSVT" width="1250" height="800" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br>
<br>
<br>
Zeile 149: Zeile 141:
Sprinteraufgabe:
Sprinteraufgabe:
Konstruiere eine Raute mit GeoGebra, die verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
Konstruiere eine Raute mit GeoGebra, die verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
 
{{Lösung versteckt|1=1.Zeichne die Punkte A und B beliebig.|2=1. Schritt|3=Verbergen}}
<div class="grid">
{{Lösung versteckt|1=2. Zeichne die Strecke f mit den Endpunkten A und B.|2=2. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A und B beliebig.|2=1. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=3. Zeichne einen Kreis c um B mit dem Radius f.|2=3. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=2. Zeichne die Strecke f mit den Endpunkten A und B.|2=2. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=4. Zeichne den Punkt C auf c (Punkt auf Objekt).|2=4. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=3. Zeichne einen Kreis c um B mit dem Radius f.|2=3. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=5. Zeichne die Strecke g mit den Endpunkten B und C.|2=5. Schritt|3=Verbergen}}
</div>
{{Lösung versteckt|1=6. Zeichne eine parallele Gerade h zu g durch A.|2=6. Schritt|3=Verbergen}}
<div class="grid">
{{Lösung versteckt|1=7. Zeichne eine parallele Gerade i zu f durch C.|2=7. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=4. Zeichne den Punkt C auf c (Punkt auf Objekt).|2=4. Schritt|3=Verbergen}}</div>
{Lösung versteckt|1=8. Schnittpunkt D ist der Schnittpunkt der Geraden h und i.|2=8. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=5. Zeichne die Strecke g mit den Endpunkten B und C.|2=5. Schritt|3=Verbergen}}</div>
{{Lösung versteckt|1=9. Vieleck ABCD|2=9. Schritt|3=Verbergen}}
<div class="width-1-3">{{Lösung versteckt|1=6. Zeichne eine parallele Gerade h zu g durch A.|2=6. Schritt|3=Verbergen}}</div>
Originallink https://www.geogebra.org/m/cc3vd7f6
</div>
<div class="grid">
<div class="width-1-3">{{Lösung versteckt|1=7. Zeichne eine parallele Gerade i zu f durch C.|2=7. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=8. Schnittpunkt D ist der Schnittpunkt der Geraden h und i.|2=8. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=9. Vieleck ABCD|2=9. Schritt|3=Verbergen}}</div>
</div>
<ggb_applet id="cc3vd7f6" width="1154" height="693" border="888888" /><br>
<ggb_applet id="cc3vd7f6" width="1154" height="693" border="888888" /><br>
Und nun bist du dran...
Und nun bist du dran...
Zeile 171: Zeile 157:
===1.5) Symmetrisches Trapez===
===1.5) Symmetrisches Trapez===
<br>
<br>
Im folgenden Applet kannst du Hilfen einblenden lassen.  
Im folgenden Applet kannst du Hilfen einblenden lassen. <br>
Originallink https://www.geogebra.org/m/pbhps7bj
<ggb_applet id="dfxt9uwz" width="1500" height="900" border="888888" />(Applet erstellt von L. Kühschelm)<br>
<ggb_applet id="dfxt9uwz" width="1500" height="900" border="888888" />(Applet erstellt von L. Kühschelm)<br>
<br>
<br>
Zeile 182: Zeile 169:
Sprinteraufgabe:
Sprinteraufgabe:
Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
<div class="grid">
<div class="width-1-3">{{Lösung versteckt|1=1.Zeichne die Punkte A,B und C beliebig.|2=1. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=2. Zeichne die Strecke f mit den Endpunkten A und B.|2=2. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=3. Zeichne die Strecke g mit den Endpunkte B und C.|2=3. Schritt|3=Verbergen}}</div>
</div>
<div class="grid">
<div class="width-1-3">{{Lösung versteckt|1=4. Zeichne die Mittelsenkrechte h(Symmetrieachse) der Strecke f (AB).|2=4. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=5. Zeichne eine parallele Gerade i zu f durch C.|2=5. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=6. Schnittpunkt D ist der Schnittpunkt von i und h.|2=6. Schritt|3=Verbergen}}</div>
</div>
<div class="grid">
<div class="width-1-3">{{Lösung versteckt|1=7. Zeichne einen Kreis c um D durch C.|2=7. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=8. Schnittpunkt F ist der Schnittpunkt der Geraden i mit c.|2=8. Schritt|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|1=9. Vieleck ABCF|2=9. Schritt|3=Verbergen}}</div>
</div>


{{Lösung versteckt|1=1.Zeichne die Punkte A,B und C beliebig.|2=1. Schritt|3=Verbergen}}
{{Lösung versteckt|1=2. Zeichne die Strecke f mit den Endpunkten A und B.|2=2. Schritt|3=Verbergen}}
{{Lösung versteckt|1=3. Zeichne die Strecke g mit den Endpunkte B und C.|2=3. Schritt|3=Verbergen}}
{{Lösung versteckt|1=4. Zeichne die Mittelsenkrechte h(Symmetrieachse) der Strecke f (AB).|2=4. Schritt|3=Verbergen}}
{{Lösung versteckt|1=5. Zeichne eine parallele Gerade i zu f durch C.|2=5. Schritt|3=Verbergen}}
{{Lösung versteckt|1=6. Schnittpunkt D ist der Schnittpunkt von i und h.|2=6. Schritt|3=Verbergen}}
{{Lösung versteckt|1=7. Zeichne einen Kreis c um D durch C.|2=7. Schritt|3=Verbergen}}
{{Lösung versteckt|1=8. Schnittpunkt F ist der Schnittpunkt der Geraden i mit c.|2=8. Schritt|3=Verbergen}}
{{Lösung versteckt|1=9. Vieleck ABCF|2=9. Schritt|3=Verbergen}}
Originallink https://www.geogebra.org/m/pdkyayad
<ggb_applet id="pdkyayad" width="1500" height="800" border="888888" /><br><br>
<ggb_applet id="pdkyayad" width="1500" height="800" border="888888" /><br><br>
Und nun bist du dran...
Und nun bist du dran...<br>
<ggb_applet id="saktuckb" width="1520" height="732" border="888888" /><br>
Originallink https://www.geogebra.org/m/kaqh7yun
<ggb_applet id="azx2crmg" width="700" height="500" border="888888" />





Version vom 20. Oktober 2024, 12:16 Uhr


Namen der Vierecke
Kennst du noch die Namen der Vierecke? Trage sie im Quiz ein.


1) Vierecke und ihre Eigenschaften

Eigenschaften von Vierecken
Wir spielen das Spiel "Brunch im Haus der Vierecke". Das Material hat deine Lehrerin für eure Tischgruppe. Ihr benötigt die Spielanleitung, den Spielplan, eine Spielfigur pro Spieler und einen Würfel.

Im folgenden werdet ihr in arbeitsteiliger Gruppenarbeit die Eigenschaften verschiedener Vierecke untersuchen. Tragt eure Ergebnisse in euer Heft ein.

Untersucht die Vierecke auf ihre Eigenschaften bezogen auf:
- die Seiten (Länge und Lage)
- die Winkel
- die Symmetrie
- die Diagonalen

1.1) Quadrat


Originallink https://www.geogebra.org/m/pcdjt3uw

GeoGebra

Applet von Kubik
Originallink https://www.geogebra.org/m/CEewWRFk

GeoGebra


(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)

Zeichne ein Quadrat in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

Sprinteraufgabe:
Konstruiere ein Quadrat mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Quadrat bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.

1.Zeichne die Punkte A und B beliebig.
2. Zeichne die Gerade f durch A und B.
3. Zeichne eine senkrechte Gerade zu g durch B.
4. Zeichne eine senkrechte Gerade zu h durch A.
5. Zeichne einen Kreis c mit Mittelpunkt B durch den Punkt A.
6. Zeichne einen Kreis d mit Mittelpunkt A durch den Punkt B.
7. Schnittpunkt D ist der Schnittpunkt des Kreises c mit der Geraden g.
8. Schnittpunkt F ist der Schnittpunkt des Kreise d mit der Geraden h.
9. Vieleck ABDF


Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Quadrat sichtbar ist und die Punkte und Strecken umbenennen.
Originallink https://www.geogebra.org/m/enusdm9h

GeoGebra


Nun bist du dran...
Originallink https://www.geogebra.org/m/kaqh7yun

GeoGebra

1.2) Rechteck


Originallink https://www.geogebra.org/m/ruxvjneq

GeoGebra

Applet von Kubik
Originallink https://www.geogebra.org/m/ZteNVhb6

GeoGebra


(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)


Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

Sprinteraufgabe: Konstruiere ein Rechteck mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Rechteck bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.

1.Zeichne die Punkte A und B beliebig.
2. Zeichne die Gerade f durch A und B.
3. Zeichne eine senkrechte Gerade g zu f durch B.
4. Zeichne eine senkrechte Gerade h zu f durch A.
5. Zeichne den Punkt C auf g.
6. Zeichne eine senkrechte Gerade i zu g durch C.
7. Schnittpunkt D ist der Schnittpunkt der Geraden i mit der Geraden h.
8. Vieleck ABCD.


Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Rechteck sichtbar ist und die Punkte und Strecken umbenennen.
Originallink https://www.geogebra.org/m/kwgdfu2h

GeoGebra


Und nun bist du dran...
Originallink https://www.geogebra.org/m/kaqh7yun

GeoGebra


1.3) Parallelogramm


Originallink https://www.geogebra.org/m/VzUhEXrz

GeoGebra


(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)


Zeichne ein Parallelogramm in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

Sprinteraufgabe: Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.

1.Zeichne die Punkte A, B und C beliebig.
2. Zeichne die Gerade f durch A und B.
3. Zeichne die Gerade g durch B und C.
4. Zeichne eine parallele Gerade h zu f durch C.
5. Zeichne eine parallele Gerade i zu g durch A.
6. Schnittpunkt D ist der Schnittpunkt der Gerade i mit der Geraden h.
7. Vieleck ABCD.


Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Parallelogramm sichtbar ist und die Punkte und Strecken umbenennen.

Originallink https://www.geogebra.org/m/h3bcpc6g

GeoGebra


(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)

Und nun bist du dran...
Originallink https://www.geogebra.org/m/kaqh7yun

GeoGebra


1.4) Raute (Rhombus)


Originallink https://www.geogebra.org/m/q4CutSVT

GeoGebra


(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)


Zeichne eine Raute in dein Heft. Tipp: Zeichne zunächst die Diagonalen e und f und verbinde dann die Eckpunkte zu einer Raute. Zeichne die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

Sprinteraufgabe: Konstruiere eine Raute mit GeoGebra, die verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.

1.Zeichne die Punkte A und B beliebig.
2. Zeichne die Strecke f mit den Endpunkten A und B.
3. Zeichne einen Kreis c um B mit dem Radius f.
4. Zeichne den Punkt C auf c (Punkt auf Objekt).
5. Zeichne die Strecke g mit den Endpunkten B und C.
6. Zeichne eine parallele Gerade h zu g durch A.
7. Zeichne eine parallele Gerade i zu f durch C.

{Lösung versteckt|1=8. Schnittpunkt D ist der Schnittpunkt der Geraden h und i.|2=8. Schritt|3=Verbergen}}

9. Vieleck ABCD

Originallink https://www.geogebra.org/m/cc3vd7f6

GeoGebra


Und nun bist du dran...

GeoGebra


1.5) Symmetrisches Trapez


Im folgenden Applet kannst du Hilfen einblenden lassen.
Originallink https://www.geogebra.org/m/pbhps7bj

GeoGebra

(Applet erstellt von L. Kühschelm)


Zeichne ein symmetrisches Trapez in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

Sprinteraufgabe: Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.

1.Zeichne die Punkte A,B und C beliebig.
2. Zeichne die Strecke f mit den Endpunkten A und B.
3. Zeichne die Strecke g mit den Endpunkte B und C.
4. Zeichne die Mittelsenkrechte h(Symmetrieachse) der Strecke f (AB).
5. Zeichne eine parallele Gerade i zu f durch C.
6. Schnittpunkt D ist der Schnittpunkt von i und h.
7. Zeichne einen Kreis c um D durch C.
8. Schnittpunkt F ist der Schnittpunkt der Geraden i mit c.
9. Vieleck ABCF

Originallink https://www.geogebra.org/m/pdkyayad

GeoGebra



Und nun bist du dran...
Originallink https://www.geogebra.org/m/kaqh7yun

GeoGebra


1.6) allgemeines Trapez


Verschiebe nun im Applet den Punkt D und gib die Eigenschaften des allgemeinen Trapezes an.

GeoGebra


(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)


Zeichne ein allgemeines Trapez in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

1.7) Drachenviereck (Deltoid)


GeoGebra


Zeichne ein Drachenviereck (Deltoid) in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen

Vermischte Übungen




Übung 1

Löse die Aufgaben aus dem Buch

  • S. 64, Nr. 1
  • S. 65, Nr. 3
  • S. 65, Nr. 4
  • S. 65, Nr. 5


2) Haus der Vierecke

Du hast die besonderen Vierecke im 1. Kapitel kennengelernt. Diese besonderen Vierecke besitzen Symmetrien (sind also achsensymmetrisch oder punktsymmetrisch) und werden im Haus der Vierecke sortiert.
Dabei steht das allgemeine Viereck ohne Symmetrien ganz unten und von Ebene zu Ebene kommen mehr Symmetrien dazu.
Ganz oben steht das Quadrat, denn es hat die meisten Symmetrien. Im Applet kannst du die Symmetrien einblenden lassen.

GeoGebra


Übung 2
Bearbeite die Aufgaben 1-8 auf der Seite Aufgabenfuchs.


Übung 3
Löse Buch S. 68 Nr. 8 und S. 69 Nr. 10



Übung 4 - Quiz: Teste dein Wissen

Löse auf der Seite realmath die Quizze zu den Eigenschaften der Vierecke.