Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
K (Buss-Haskert verschob die Seite Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme nach Benutzer:Buss-Haskert/Vierecke und Dreiecke/Winkelsumme: einheitlicher Seitenname mit anderen Lernpfaden ) |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 13: | Zeile 13: | ||
{{Box|Entdecken|- Zeichne ein beliebiges Viereck, zeichne die Winkel mit unterschiedlichen Farben ein und schneide es aus (vgl. Bild unten). Reiße nun die Ecken ab und lege sie zusammen. Was fällt dir auf?<br>- Lass dir nun die Winkelgrößen anzeigen und berechne die Winkelsumme. Was fällt dir nun auf? <br> | {{Box|Entdecken|- Zeichne ein beliebiges Viereck, zeichne die Winkel mit unterschiedlichen Farben ein und schneide es aus (vgl. Bild unten). Reiße nun die Ecken ab und lege sie zusammen. Was fällt dir auf?<br>- Lass dir nun die Winkelgrößen anzeigen und berechne die Winkelsumme. Was fällt dir nun auf? <br> | ||
- Verändere die Form des Vierecks, indem du die Punkte verschiebst und berechne jeweils die Winkelsumme. Kannst du deine Vermutung bestätigen?|Lösung|Icon=brainy hdg-scientist07}} | - Verändere die Form des Vierecks, indem du die Punkte verschiebst und berechne jeweils die Winkelsumme. Kannst du deine Vermutung bestätigen?|Lösung|Icon=brainy hdg-scientist07}} | ||
https://www.geogebra.org/m/u5ggpyvz | Originallink https://www.geogebra.org/m/u5ggpyvz | ||
<ggb_applet id="u5ggpyvz" width="1920" height="921" border="888888" /><br> | <ggb_applet id="u5ggpyvz" width="1920" height="921" border="888888" /><br> | ||
Originallink https://www.geogebra.org/m/umjjypth | |||
<ggb_applet id="umjjypth" width="1904" height="1500" border="888888" /><br><br> | <ggb_applet id="umjjypth" width="1904" height="1500" border="888888" /><br><br> | ||
Version vom 12. Oktober 2024, 14:58 Uhr
3) Winkelsumme im Viereck
Originallink https://www.geogebra.org/m/u5ggpyvz
Originallink https://www.geogebra.org/m/umjjypth
In jedem Viereck beträgt die Winkelsumme 360°()
Du kannst das Grad-Zeichen ° auf dem iPad eingeben, indem du lange auf die Ziffer 0 drückst.
Nutze Eigenschaften der Winkel im symmetrischen Trapez: Benachbarte Winkel sind gleich groß. Also ist β = α = 45° und γ = δ.
45° + 45° + 2γ = 360°
Nutze Eigenschaften der Winkel im Parallelogramm: Gegenüberliegende Winkel sind gleich groß.
Also ist α = γ = 105° und β = δ.
105° + 105° + 2β = 360°
Zeichne ein symmetrisches Trapez. Wo muss der Winkel 110° liegen? Schau eventuell die Skizze von Nr. 2a an.
β ist ein Nebenwinkel zu 50°. Nebenwinkel ergänzen sich zu 180°.
50 ° + β = 180°.
Löse die Gleichung nach β auf.
γ ist ein Nebenwinkel zu 60°. Nebenwinkel ergänzen sich zu 180°.
α ist ein Nebenwinkel zu 100°,γ ist ein Nebenwinkel zu 80°, Nebenwinkel ergänzen sich zu 180°.
γ und β sind Nebenwinkel, α ist ein Scheitelwinkel zu 140°. Berechne δ mit der Winkelsumme.