Benutzer:Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Buss-Haskert verschob die Seite Benutzer:Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften nach Benutzer:Buss-Haskert/Vierecke und Dreiecke/Vierecke und ihre Eigenschaften: einheitlicher Seitenname mit anderen Lernpfaden ) |
||
(11 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 10: | Zeile 10: | ||
[[Buss-Haskert/Vierecke und Dreiecke/Checkliste|5) Checkliste]]}} | [[Buss-Haskert/Vierecke und Dreiecke/Checkliste|5) Checkliste]]}} | ||
{{Box|Namen der Vierecke|Kennst du noch die Namen der Vierecke? Trage sie im | {{Box|Namen der Vierecke|Kennst du noch die Namen der Vierecke? Trage sie im Quiz ein.|Frage}} | ||
{{LearningApp|app=pnwakx88521|width=100%|height=600px}} | |||
==1) Vierecke und ihre Eigenschaften== | ==1) Vierecke und ihre Eigenschaften== | ||
{{Box|Eigenschaften von Vierecken|Wir spielen das Spiel "Brunch im Haus der Vierecke". Das Material hat deine Lehrerin für eure Tischgruppe. Ihr benötigt die Spielanleitung, den Spielplan, eine Spielfigur pro Spieler und einen Würfel.|Meinung}} | {{Box|Eigenschaften von Vierecken|Wir spielen das Spiel "Brunch im Haus der Vierecke". Das Material hat deine Lehrerin für eure Tischgruppe. Ihr benötigt die Spielanleitung, den Spielplan, eine Spielfigur pro Spieler und einen Würfel.|Meinung}} | ||
Im folgenden | Im folgenden werdet ihr in arbeitsteiliger Gruppenarbeit die Eigenschaften verschiedener Vierecke untersuchen. Tragt eure Ergebnisse in euer Heft ein.<br> | ||
<br> | <br> | ||
Zeile 28: | Zeile 27: | ||
===1.1) Quadrat=== | ===1.1) Quadrat=== | ||
<br> | <br> | ||
<ggb_applet id="CEewWRFk" width="950" height=" | <ggb_applet id="qnhdzvqn" width="836" height="677" border="888888" /> | ||
Applet von Kubik<br> | |||
<ggb_applet id="CEewWRFk" width="950" height="650" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br> | |||
<br> | <br> | ||
Zeichne ein Quadrat in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br> | Zeichne ein Quadrat in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br> | ||
Zeile 62: | Zeile 64: | ||
===1.2) Rechteck=== | ===1.2) Rechteck=== | ||
<br> | <br> | ||
<ggb_applet id="ZteNVhb6" width="950" height=" | <ggb_applet id="zah5mrby" width="831" height="661" border="888888" /> | ||
Applet von Kubik<br> | |||
<ggb_applet id="ZteNVhb6" width="950" height="650" border="888888" /><br>(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)<br> | |||
<br> | <br> | ||
Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br> | Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.<br> | ||
Zeile 143: | Zeile 148: | ||
<br> | <br> | ||
Sprinteraufgabe: | Sprinteraufgabe: | ||
Konstruiere eine Raute mit GeoGebra, | Konstruiere eine Raute mit GeoGebra, die verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte. | ||
<div class="grid"> | <div class="grid"> | ||
Zeile 227: | Zeile 232: | ||
{{LearningApp|app=4919874|width=100%|height=600px}} | {{LearningApp|app=4919874|width=100%|height=600px}} | ||
{{Box|Übung 1|Löse Buch S. | {{Box|Übung 1|Löse die Aufgaben aus dem Buch | ||
* S. 64, Nr. 1 | |||
* S. 65, Nr. 3 | |||
* S. 65, Nr. 4 | |||
* S. 65, Nr. 5|Üben}} | |||
Zeile 241: | Zeile 250: | ||
{{Box|Übung 3|Löse Buch S. 68 Nr. 8 und S. 69 Nr. 10|Üben}} | {{Box|Übung 3|Löse Buch S. 68 Nr. 8 und S. 69 Nr. 10|Üben}} | ||
{{LearningApp|app=pe2hgu76220|width=100%|height=600px}} | |||
{{Box|Übung 4 - Quiz: Teste dein Wissen|Löse auf der Seite realmath die Quizze zu den Eigenschaften der Vierecke. | |||
* [https://www.realmath.de/Neues/Klasse8/vierecke/vierquiz.php Quiz 1] | |||
* [https://www.realmath.de/Neues/Klasse8/vierecke/viereckfinden.php Quiz 2] | |||
* [https://www.realmath.de/Neues/Klasse8/vierecke/viereckquiz01.php Quiz 3]|Üben}} | |||
{{Fortsetzung|weiter=3) Winkelsumme im Viereck|weiterlink=Buss-Haskert/Vierecke und Dreiecke/Winkelsumme}} | {{Fortsetzung|weiter=3) Winkelsumme im Viereck|weiterlink=Buss-Haskert/Vierecke und Dreiecke/Winkelsumme}} |
Version vom 12. Oktober 2024, 14:54 Uhr
1) Vierecke und ihre Eigenschaften
Im folgenden werdet ihr in arbeitsteiliger Gruppenarbeit die Eigenschaften verschiedener Vierecke untersuchen. Tragt eure Ergebnisse in euer Heft ein.
Untersucht die Vierecke auf ihre Eigenschaften bezogen auf:
- die Seiten (Länge und Lage)
- die Winkel
- die Symmetrie
- die Diagonalen
1.1) Quadrat
Applet von Kubik
(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)
Zeichne ein Quadrat in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein Quadrat mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Quadrat bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Quadrat sichtbar ist und die Punkte und Strecken umbenennen.
Nun bist du dran...
1.2) Rechteck
Applet von Kubik
(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)
Zeichne ein Rechteck in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein Rechteck mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Rechteck bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Rechteck sichtbar ist und die Punkte und Strecken umbenennen.
Und nun bist du dran...
1.3) Parallelogramm
(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)
Zeichne ein Parallelogramm in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein Parallelogramm mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein Parallelogramm bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
Du kannst nun die Hilfsobjekte ausblenden, sodass nur das Parallelogramm sichtbar ist und die Punkte und Strecken umbenennen.
(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)
Und nun bist du dran...
1.4) Raute (Rhombus)
(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)
Zeichne eine Raute in dein Heft. Tipp: Zeichne zunächst die Diagonalen e und f und verbinde dann die Eckpunkte zu einer Raute. Zeichne die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere eine Raute mit GeoGebra, die verschiebbare Punkte hat und beim Verschieben eine Raute bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die (möglichen) Konstruktionsschritte.
Und nun bist du dran...
1.5) Symmetrisches Trapez
Im folgenden Applet kannst du Hilfen einblenden lassen.
(Applet erstellt von L. Kühschelm)
Zeichne ein symmetrisches Trapez in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Sprinteraufgabe:
Konstruiere ein symmetrisches Trapez mit GeoGebra, das verschiebbare Punkte hat und beim Verschieben ein symmetrisches Trapez bleibt. Das Applet zeigt das Ergebnis. Hinter den Tipps verbergen sich die Konstruktionsschritte.
Und nun bist du dran...
1.6) allgemeines Trapez
Verschiebe nun im Applet den Punkt D und gib die Eigenschaften des allgemeinen Trapezes an.
(Applet erstellt von GeoGebra Translation Team German, Pöchtrager)
Zeichne ein allgemeines Trapez in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
1.7) Drachenviereck (Deltoid)
Zeichne ein Drachenviereck (Deltoid) in dein Heft. Ergänze die Diagonalen (blau) und die Symmetrieachsen (rot). Notiere die Eigenschaften.
- Seiten (Länge und Lage)
- Winkel
- Symmetrie
- Diagonalen
Vermischte Übungen
2) Haus der Vierecke
Du hast die besonderen Vierecke im 1. Kapitel kennengelernt. Diese besonderen Vierecke besitzen Symmetrien (sind also achsensymmetrisch oder punktsymmetrisch) und werden im Haus der Vierecke sortiert.
Dabei steht das allgemeine Viereck ohne Symmetrien ganz unten und von Ebene zu Ebene kommen mehr Symmetrien dazu.
Ganz oben steht das Quadrat, denn es hat die meisten Symmetrien.
Im Applet kannst du die Symmetrien einblenden lassen.