Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 56: | Zeile 56: | ||
====3) Formeln umstellen==== | ====3) Formeln umstellen==== | ||
<br> | <br> | ||
{{Box|Umstellen der Formel|Um die Länge einer der Seiten a und c oder der Höhe zu berechnen, muss die Formeln für den Flächeninhalt umgestellt werden. <br>1. Stelle die Flächeninhaltsformel um nach den Seitenlängen a und c.<br> | {{Box|Umstellen der Formel|Um die Länge einer der Seiten a und c oder der Höhe zu berechnen, muss die Formeln für den Flächeninhalt umgestellt werden. <br>1. Stelle die Flächeninhaltsformel um nach den Seitenlängen a und c.<br> | ||
<br>2. Stelle die Flächeninhaltsformel nach der Höhe um.|Üben}} | <br>2. Stelle die Flächeninhaltsformel nach der Höhe um.|Üben}} | ||
Zeile 75: | Zeile 74: | ||
</div> | </div> | ||
</div> | </div> | ||
<br> | |||
{{Box|Übung 4: Formel umstellen|Löse die nachfolgende LearningApp. Schreibe die Aufgabe strukturiert in dein Heft.|Üben}} | {{Box|Übung 4: Formel umstellen|Löse die nachfolgende LearningApp. Schreibe die Aufgabe strukturiert in dein Heft.|Üben}} | ||
{{LearningApp|app=p5q3qzoq319|width=100%|heigth=600px}} | {{LearningApp|app=p5q3qzoq319|width=100%|heigth=600px}} |
Version vom 27. November 2022, 12:05 Uhr
4.3) Trapez: Umfang und Flächeninhalt
1) Höhe im Trapez
Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein.
2) Formeln herleiten: Flächeninhalt A und Umfang u
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Trapezes herzuleiten. Notiere deine Ideen.
Eine andere Möglichkeit ist die Berechnung mit Hilfe der sogenannten Mittellinie. Hier ein Video zur Erklärung.
Entnimm den Skizzen die nötigen Angaben für a, c und h. Setze dann in die Formel ein.
Vergleiche deine Lösungen (hier sind sie durcheinander angegeben):
Hier sind die Werte für a, c und h gegeben. Setze sie in die Formel ein und berechne.
3) Formeln umstellen
A = ∙h |∙2
2∙A = (a+c)∙h |:h
= a+c |-c
- c = a
Stelle die Formel entsprechend nach c um.
A = ∙h |∙2
2∙A = (a+c)∙h |:(a+c)
= h
Lösungen (gemischt) 0,9; 2,5; 7,2; 9; 14; 25; 75,6
4) Anwendungsaufgaben
Der Querschnitt des Kanals hat die Form eines Trapezes. Zeichne eine Skizze in dein Heft und beschrifte sie mit den angegebenen Maßen.
Lösung: 1386m²
Die gesamte Fläche der Backform setzt sich aus 5 Teilflächen zusammen:
Der Boden ist ein Rechteck.
Die Seiten der Backform sind jeweils Trapeze.
Skizziere die Flächen jeweils und beschrifte sie mit den angegebenen Maßen.
Zugabe von 10%
geg: G = 671cm²; p% = 10% = 0,1;
ges: W = G∙p%
W = 671 ∙ 0,1
W = 67,1 (cm²]
Dieser Wert muss also noch hinzugefügt werden.
(Du kannst auch mit dem Dreisatz rechnen:
100% | 671
Bestimme damit die Anzahl der Steine pro 1m² (=10000cm²).
Lösung: AStein=265cm²; ca.38 Steine
Bestimme den Flächeninhalt des Pflastersteins:
A = ARechteck - 2∙ATrapez
= 16∙20 - 2∙ ... wie kannst du den Flächeninhalt der Trapeze bestimmen?
Lösung: A = 265 cm², also hat ein Stein die Fläche von 265 cm². Wie viele solcher Steine passen in 1m² = 100dm² = 10000cm²?