Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Tipp ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 101: | Zeile 101: | ||
10% |67,1<br> | 10% |67,1<br> | ||
|2=Tipp 2 zu Nr. 7|3=Verbergen}} | |2=Tipp 2 zu Nr. 7|3=Verbergen}} | ||
{{Lösung versteckt|1=Die Fläche des Steins entspricht der Fläche des großen Rechtecks minus den 2 kleinen Trapezflächen. Zeichne eine Skizze in dein Heft und beschrifte sie vollständig. Berechne dann die Fläche eines Steines. <br>Bestimme damit die Anzahl der Steine pro 1m² (=10000cm²).<br>Lösung: A<small>Stein</small>=265cm²; ca.38 Steine|2=Tipp zu Nr. 8|3=Verbergen}} | {{Lösung versteckt|1=Die Fläche des Steins entspricht der Fläche des großen Rechtecks minus den 2 kleinen Trapezflächen. Zeichne eine Skizze in dein Heft und beschrifte sie vollständig. Berechne dann die Fläche eines Steines. <br>Bestimme damit die Anzahl der Steine pro 1m² (=10000cm²).<br>Lösung: A<small>Stein</small>=265cm²; ca.38 Steine|2=Tipp 1 zu Nr. 8|3=Verbergen}} | ||
{{Lösung versteckt|1=[[Datei:Skizze zu S.92 Nr. 8.png|rahmenlos]]<br> | |||
Bestimme den Flächeninhalt des Pflastersteins:<br> | |||
A = A<sub>Rechteck</sub> - 2∙A<sub>Trapez</sub><br> | |||
= 16∙20 - 2∙ ... wie kannst du den Flächeninhalt der Trapeze bestimmen?<br> | |||
Lösung: A = 265 cm², also hat ein Stein die Fläche von 265 cm². Wie viele solcher Steine passen in 1m² = 100dm² = 10000cm²?<br> | |||
Lösung ca. 38.|2=Tipp 2 zu Nr. 8|3=Verbergen}} | |||
{{Fortsetzung|weiter=4) Dreieck|weiterlink=Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Dreieck}} | {{Fortsetzung|weiter=4) Dreieck|weiterlink=Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Dreieck}} |
Version vom 12. Januar 2021, 09:47 Uhr
4.3) Trapez: Umfang und Flächeninhalt
1) Höhe im Trapez
Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein.
2) Formeln herleiten: Flächeninhalt A und Umfang u
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Trapezes herzuleiten. Notiere deine Ideen.
3) Formeln umstellen
A = ∙h |∙2
2∙A = (a+c)∙h |:h
= a+c |-c
- c = a
Stelle die Formel entsprechend nach c um.
A = ∙h |∙2
2∙A = (a+c)∙h |:(a+c)
= h
4) Anwendungsaufgaben
Der Querschnitt des Kanals hat die Form eines Trapezes. Zeichne eine Skizze in dein Heft und beschrifte sie mit den angegebenen Maßen.
Lösung: 1386m²
Die gesamte Fläche der Backform setzt sich aus 5 Teilflächen zusammen:
Der Boden ist ein Rechteck.
Die Seiten der Backform sind jeweils Trapeze.
Skizziere die Flächen jeweils und beschrifte sie mit den angegebenen Maßen.
Zugabe von 10%
geg: G = 671cm²; p% = 10% = 0,1;
ges: W = G∙p%
W = 671 ∙ 0,1
W = 67,1 (cm²]
Dieser Wert muss also noch hinzugefügt werden.
(Du kannst auch mit dem Dreisatz rechnen:
100% | 671
Bestimme damit die Anzahl der Steine pro 1m² (=10000cm²).
Lösung: AStein=265cm²; ca.38 Steine
Bestimme den Flächeninhalt des Pflastersteins:
A = ARechteck - 2∙ATrapez
= 16∙20 - 2∙ ... wie kannst du den Flächeninhalt der Trapeze bestimmen?
Lösung: A = 265 cm², also hat ein Stein die Fläche von 265 cm². Wie viele solcher Steine passen in 1m² = 100dm² = 10000cm²?