Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez: Unterschied zwischen den Versionen
K (Bilder ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 41: | Zeile 41: | ||
{{Box|Übung 3|Löse Buch | {{Box|Übung 3|Löse Buch | ||
* S. 92 Nr. 1 | * S. 92 Nr. 1 | ||
* S. 92 Nr. 2a,c|Üben}} | * S. 92 Nr. 2a,c|Üben}}<br> | ||
====3) Formeln umstellen====<br> | |||
{{Box|Umstellen der Formel|Um die Länge einer der Seiten a und c oder der Höhe zu berechnen, muss die Formeln für den Flächeninhalt umgestellt werden. <br>1. Stelle die Flächeninhaltsformel um nach den Seitenlängen a und c.<br> | {{Box|Umstellen der Formel|Um die Länge einer der Seiten a und c oder der Höhe zu berechnen, muss die Formeln für den Flächeninhalt umgestellt werden. <br>1. Stelle die Flächeninhaltsformel um nach den Seitenlängen a und c.<br> | ||
Zeile 62: | Zeile 64: | ||
</div> | </div> | ||
{{Box|Übung 4: Formel umstellen|Löse die nachfolgende LearningApp. Schreibe die Aufgabe strukturiert in dein Heft.|Üben}} | {{Box|Übung 4: Formel umstellen|Löse die nachfolgende LearningApp. Schreibe die Aufgabe strukturiert in dein Heft.|Üben}} | ||
{{LearningApp|app=p5q3qzoq319|width=100%|heigth=600px}} | {{LearningApp|app=p5q3qzoq319|width=100%|heigth=600px}} |
Version vom 7. Januar 2021, 19:48 Uhr
4.3) Trapez: Umfang und Flächeninhalt
1) Höhe im Trapez
Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein.
2) Formeln herleiten: Flächeninhalt A und Umfang u
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Trapezes herzuleiten. Notiere deine Ideen.
====3) Formeln umstellen====
∙h |∙2
2∙A = (a+c)∙h |:h
= a+c |-c
- c = a
Stelle die Formel entsprechend nach c um.
∙h |∙2
2∙A = (a+c)∙h |:(a+c)
= h
4) Anwendungsaufgaben
Der Querschnitt des Kanals hat die Form eines Trapezes. Zeichne eine Skizze in dein Heft und beschrifte sie mit den angegebenen Maßen.
Lösung: 1386m²
Die gesamte Fläche der Backform setzt sich aus 5 Teilflächen zusammen:
Der Boden ist ein Rechteck.
Die Seiten der Backform sind jeweils Trapeze.
Skizziere die Flächen jeweils und beschrifte sie mit den angegebenen Maßen.
Zugabe von 10%
geg: G = 671cm²; p% = 10% = 0,1; p+%=110%=1,1
ges: G+
Bestimme damit die Anzahl der Steine pro 1m² (=10000cm²).
Lösung: AStein=265cm²; ca.38 Steine