Benutzer:Buss-Haskert/Vierecke und Dreiecke/Umfang und Flächeninhalt/Trapez: Unterschied zwischen den Versionen
K (Video ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
K (Bilder ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 14: | Zeile 14: | ||
====1) Höhe im Trapez==== | ====1) Höhe im Trapez==== | ||
Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein. | Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein.<br> | ||
<div class="grid"> | |||
<div class="width-1-3">[[Datei:Trapez Höhe 1.png|rahmenlos]]</div> | |||
<div class="width-1-3">[[Datei:Trapez Höhe 2.png|rahmenlos]]</div> | |||
<div class="width-1-3">[[Datei:Trapez Höhe 3.png|rahmenlos]]</div> | |||
</div> | |||
{{Box|Übung 1: Höhe im Trapez|Kennzeichne auf dem AB jeweils die parallelen Seiten und zeichne die Höhe des Trapezes ein.|Üben}} | {{Box|Übung 1: Höhe im Trapez|Kennzeichne auf dem AB jeweils die parallelen Seiten und zeichne die Höhe des Trapezes ein.|Üben}} |
Version vom 7. Januar 2021, 19:45 Uhr
4.3) Trapez: Umfang und Flächeninhalt
1) Höhe im Trapez
Die Höhe eines Trapezes ist der Abstand zwischen den parallelen Seiten. Schau, welche der Seiten parallel zueinander liegen und zeichne dazwischen die Höhe ein.
2) Formeln herleiten: Flächeninhalt A und Umfang u
Nun versuche, mithilfe des GeoGebra-Applets die Formel für den Flächeninhalt des Trapezes herzuleiten. Notiere deine Ideen.
∙h |∙2
2∙A = (a+c)∙h |:h
= a+c |-c
- c = a
Stelle die Formel entsprechend nach c um.
∙h |∙2
2∙A = (a+c)∙h |:(a+c)
= h
3) Formeln umstellen
4) Anwendungsaufgaben
Der Querschnitt des Kanals hat die Form eines Trapezes. Zeichne eine Skizze in dein Heft und beschrifte sie mit den angegebenen Maßen.
Lösung: 1386m²
Die gesamte Fläche der Backform setzt sich aus 5 Teilflächen zusammen:
Der Boden ist ein Rechteck.
Die Seiten der Backform sind jeweils Trapeze.
Skizziere die Flächen jeweils und beschrifte sie mit den angegebenen Maßen.
Zugabe von 10%
geg: G = 671cm²; p% = 10% = 0,1; p+%=110%=1,1
ges: G+
Bestimme damit die Anzahl der Steine pro 1m² (=10000cm²).
Lösung: AStein=265cm²; ca.38 Steine