Benutzer:Buss-Haskert/Kreis und Zylinder/Kreisfläche

Aus ZUM Projektwiki
Schullogo HLR.jpg



Kreisfläche A

Pizza - mini oder maxi
Green-pepper-2024889 1280.png
Green-pepper-2024889 1280.png
In deiner Lieblingspizzeria werden die Pizzen in zwei verschiedenen Größen angeboten:

Die Mini-Pizza hat einen Durchmesser von 20 cm,

der Durchmesser der Maxi-Pizza beträgt 40cm.

Pizza "Green Pepper" mini - 4,20 €

Pizza "Green Pepper" maxi - 12,60 €.

Wo bekommst du mehr Pizza für dein Geld?

Diskutiert, welche Größen gegeben bzw. gesucht sind.

2.1 Kreisfläche - Herleitung der Formel

Kreisfläche - Herleitung der Formel

Führe die beschriebenen Schritte im GeoGebra-Applet durch.
Kreisfläche GeoGebra Arbeitsauftrag.png
Kreisfläche GeoGebra Arbeitsauftrag Teil 2.png
a) Beschreibe, was geschieht.
b) Welche Figur entsteht?

c) Leite damit eine Formel für die Kreisfläche her.

Applet von Anthony Or. Education Bureau

Das Video fasst die Herleitung der Formel zusammen:


Eine weitere Möglichkeit, den Flächeninhalt eines Kreises abzuschätzen, zeigt das folgende Applet von Pöchtrager:
Beschreibe!

GeoGebra




Kreisfläche - Formel
Bezeichnungen am Kreis.png
Den Flächeninhalt A eines Kreises kann man mithilfe des Radius r berechnen:

A = π r²

Wenn der Durchmesser gegeben ist, berechne zunächst den Radius r =.


Merke dir die Formel mit dem Lied von Dorfuchs:



2.2 Kreisfläche - Berechnungen

Kreisfläche - Formel umstellen

Stelle die Formel für den Flächeninhalt des Kreises
A = π·r² nach r um.

Übertrage anschließend die Beispielaufgaben in dein Heft.

Beispiele:

Fläche A berechnen:

geg: r = 3,0 cm
ges: A
A = π · r²   |Wert einsetzen
   = π · 3,0²

   = 28,27 (cm²)

geg: d = 5,0 cm
ges: A
r = = = 2,5 (cm)
A = π · r²   |Wert einsetzen
   = π · 2,5²

   = 19,63 (cm²)
Radius r berechnen:

geg: A = 7,0 cm²
ges: r
A = π · r²   |: π
= r2  |
= r   |Wert einsetzen
= r
1,5 (cm) ≈ r

Durchmesser d berechnen:

geg: A = 18,10 cm²
ges: d
d = 2·r; Berechne zunächst r:
A = π · r²   |: π
= r2   |
= r   |Wert einsetzen
= r
2,4 (cm) ≈ r

d = 2·r = 2 · 2,4 = 4,8 (cm)



Übung 1 - online

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 1
  • 2
  • 3
  • 4


Übung 2

Löse die Aufgaben aus dem Buch. Schreibe ausführlich und übersichtlich. Notiere - falls nötig - und die Umstellung der Formel. Vergleiche deine Lösungen und hake ab.

  • S. 131 Nr. 1 (Wähle eine Aufgabe aus.)
  • S. 131 Nr. 2 (Wähle eine Aufgabe aus.)
  • S. 132 Nr. 3 (Wähle aus: a und c oder b und d)
  • S. 132 Nr. 4

Prüfe deine Lösungen mithilfe der LearningApp. Trage deine Lösung ein und klicke den Prüfbutton. Hake im Heft deine Ergebnisse ab.




Übung 3 - Zusammenhang zwischen Radius und Umfang bzw. Radius und Flächeninhalt

Ergänze die Tabelle.
Tabelle Zusammenhang Radius Umfang Flächeninhalt Kreis.png
Trage die Werte in ein Koordinatenkreuz ein. Was fällt dir auf?

Fülle den Lückentext aus und übertrage ihn in dein Heft.

Radius r und Umfang u:
Wenn man den Radius r eines Kreises verdoppelt, verdreifacht, vervierfacht,... dann, , sich der Umfang u.
Radius r und Flächeninhalt A:
Wenn man den Radius r eines Kreises verdoppelt, verdreifacht, vervierfacht,... dann, , sich der Flächeninhalt A.

vervierfachtverneunfachtverdreifachtverdoppeltversechzehnfachtvervierfacht

Prüfe deine Vermutung mit dem nachfolgenden GeoGebra-Applet:

GeoGebra


2.3 Kreisfläche - Anwendungen

Green-pepper-2024889 1280.png

Jetzt kannst du die Einführungsaufgabe lösen: Bei welcher Pizza erhältst du mehr Pizza für dein Geld?


Geometrische Anwendungen

Geometrische Anwendungen - Beispiele

Berechne den Flächeninhalt und den Umfang der Figuren. Notiere deine Überlegungen übersichtlich.

2. Beispiel:
Halbkreis im Viertelkreis.png
3. Beispiel:
Rechtwinkliges Dreieck mit Halbkreis.png
 


Übung 4 - Geometrische Anwendungen

Löse die Aufgaben aus dem Buch. Notiere deine Überlegungen ausführlich und übersichtlich. Zeichne - falls nötig - Teilskizzen. Prüfe deine Lösungen und hake ab.

  • S. 132 Nr. 6
  • S. 132 Nr. 8



Übung 5 - Geometrische Anwendungen

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 12
  • 13
  • 14
  • 18

ODER:

Konstruiere mit dem Zirkel Figuren aus Kreisen bzw. Halbkreisen und berechne dazu Umfang und Flächeninhalt.

Sachsituationen


Einstiegsaufgabe - Kreisfläche

Betrachte das nachfolgende Applet und beantworte die folgenden Fragen:

  • Aus einem Quadrat der Seitenlänge a wird ein maximaler Kreis ausgeschnitten. Wieviel Prozent beträgt der Abfall?
  • Jetzt werden 4, 9, 16 gleich große Kreise ausgeschnitten. Wieviel Prozent beträgt nun der Abfall?
  • Auch wenn das Ergebnis zunächst überraschen mag, kann man es einfach erklären. Betrachte für n > 1 den Zusammenhang zwischen dem hervorgehobenen kleinen Quadrat mit kleinem Kreis und der Figur für n = 1. Wie entstehen diese Figuren auseinander? Was bedeutet das für die Flächen?

Originallink: https://www.geogebra.org/m/krnwuf2s

GeoGebra

Applet von Hans-Jürgen Elschenbroich


Übung 6 - Sachsituationen

Löse so viele Aufgaben, dass du mindestes 7 Sternchen sammelst. Notier deine Rechnungen ausführlich und übersichtlich. Prüfe deine Lösungen und hake ab.

  • S. 133, Nr. 10 (*)
  • S. 134, Nr. 16 (*)
  • S. 134, Nr. 17 (*)
  • S. 134, Nr. 18 (*)
  • S. 134, Nr. 19 (*)
  • S. 134, Nr. 20 (**)
  • S. 134, Nr. 21 (**)
  • S. 150, Nr. 7 (*)
  • S. 150, Nr. 8 (**)
  • S. 150, Nr. 9 (**)



Übung 7 - Sachsituationen online

Löse auf der Seite Aufgabenfuchs die Aufgaben

  • 9
  • 10
  • 25
  • 26
  • 27
  • 28

Löse auf auf der Seite Aufgabenfuchs 2 die Aufgabe

  • 44
  • 63

Vermischte Übungen

Übung 8
Bearbeite die nachfolgenden LearningApps.