Digitale Werkzeuge in der Schule/Basiswissen Analysis: Unterschied zwischen den Versionen
Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 107: | Zeile 107: | ||
{ Sei <math> f(x) </math> die Funktion, die die Geschwindigkeit eines Autos in Kilometern pro Stunde (<math>\textstyle \frac{\mathrm{km}}{\mathrm{h}}</math>) angibt, dann gilt für die Stammfunktion <math> F(x) </math>: } | { Sei <math> f(x) </math> die Funktion, die die Geschwindigkeit eines Autos in Kilometern pro Stunde (<math>\textstyle \frac{\mathrm{km}}{\mathrm{h}}</math>) angibt, dann gilt für die Stammfunktion <math> F(x) </math>: } | ||
- <math> F(x) </math> gibt die Beschleunigung des Autos an. | - <math> F(x) </math> gibt die Beschleunigung des Autos an. | ||
+ <math> F(x) </math> gibt die zurückgelegte Strecke des Autos an. | |||
+ <math> F(x) </math> gibt die zurückgelegte Strecke an. | - <math> F(x) </math> gibt die durchschnittliche Geschwindigkeit des Autos an. | ||
- <math> F(x) </math> gibt die durchschnittliche Geschwindigkeit des Autos an. | |||
{ Eine Stammfunktion von <math> f(x) = x^2 \cdot cos(x) </math> lautet <math> F(x) = \frac{1}{3} x^3 \cdot sin(x) </math>. } | { Eine Stammfunktion von <math> f(x) = x^2 \cdot cos(x) </math> lautet <math> F(x) = \frac{1}{3} x^3 \cdot sin(x) </math>. } |
Aktuelle Version vom 12. Juni 2020, 13:59 Uhr
Diagnoseaufgaben zum Basiswissen Analysis