Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der Randfunktion zur Integralfunktion

Aus ZUM Projektwiki
Allgemeine Info

Zuerst erklären wir Dir wichtige Begriffe und Zusammenhänge. Danach kannst Du selbständig die Aufgaben bearbeiten. Du benötigst Papier und Stifte, Lineal und Taschenrechner. Zu jedem Kapitel wurden Aufgaben beigefügt, die Dir dabei helfen das Wissen besser zu verstehen und zu vertiefen.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit grünem Streifen sind Knobelaufgaben.
  • Aufgaben, die mit einem ⭐ gekennzeichnet sind, sind nur für den LK gedacht.
Viel Erfolg!

Einführung: Integral

Was ist ein Integral?

Die Integralrechnung ist eine Art Flächenberechnung. Die Fläche unter einem Graphen kann durch den gemeinsamen Grenzwert von Ober- und Untersummen bestimmt werden. D.h. man versucht, eine kurvige Fläche mit Flächen auszufüllen, die man leicht berechnen kann. Das sind vor allem Rechteck- und Dreieickflächen. Dann summiert man diese Teilflächen und erhält die Gesamtfläche. Dies nennt man das Integral von über das Intervall und schreibt dafür .

Die Funktion heißt dann über integrierbar. Dabei ist die untere und die obere Integrationsgrenze und die Rand- oder auch Integrandfunktion.

Betrachtet man die Werte von Integralen in Abhängigkeit von einer festen unteren Grenze und einer variablen (anstelle einer festen) oberen Grenze und verwendet deshalb als Variable der Integrandfunktion , so erhält man eine Integralfunktion

ist also eine Funktion, die jedem das Integral von über zuordnet. ist dabei die Funktionsvariable, in die eingesetzt werden darf, während eine gebundene Variable ist, in die nicht eingesetzt werden darf.

Eine Funktion zu integrieren (d.h. die Fläche unter der Funktionskurve zu berechnen) heißt, sich diese Funktion als 1. Ableitung zu denken. Nun sucht man eine dazu gehörige Funktion, die - wenn man sie ableitet - ebenjene 1.Ableitung (also die Ausgangsfunktion) ergeben würde. Diese andere Funktion heißt Stammfunktion. Eine Funktion heißt also Stammfunktion zur Funktion , wenn gilt für alle .

Rechnen mit Integralen

Aufgabe 1: Rechenregeln

Entscheide jeweils, ob die graphisch dargestellte Gleichung gilt und wenn ja, welche Rechenregel zutrifft.

Du benötigst Hilfe? Dann siehe dir die Rechenregeln in der nächsten Box an.




Rechenregeln

Hier findest du einige, wichtige Regeln zum Rechnen mit Integralen.

1. Additivität des Integrals:

2. Regel vom konstanten Faktor:

3. Summenregel:

4. Differenzregel:


Weitere wichtige Regeln:

5.

6. , wenn für alle

7.

8.

Die Verbindung zwischen Integralen und Differentialen

Hauptsatz der Differential- und Integralrechnung

Der Hauptsatz der Differential- und Integralrechnung besteht aus zwei Teilen.

Der erste Teil des Hauptsatzes

Die Funktion ist eine Stammfunktion von . Es gilt .

Der zweite Teil des Hauptsatzes

Dieser Teil beschäftigt sich mit der Frage: "Wie berechnet man bestimmte Integrale wie ?"

Wenn eine Stammfunktion von ist, dann gilt . Für schreibt man auch kurz .

Mittelwerte mithilfe des Integrals bestimmen

Mittelwert

Mit einem Integral, zu einer Funktion , kannst du den Mittelwert der Funktion auf diesem Intervall bestimmen. Bei der Berechnung verwendest du den Wert des bestimmten Integrals und dessen Breite.

Hierzu benötigst du folgende Formel: . Da solche Formeln sehr theoretisch sind, haben wir dir zur Formel des Mittelwertes eine Skizze gemacht.

Formel zur Bestimmung des Mittelwertes einer Funktion






Aufgabe 2: Der Goldpreis

Hierfür benötigst du einen Zettel und einen Stift.

Herr Meier überlegt sein Geld in Gold anzulegen. Um eine Entscheidung zu fällen, beobachtet er zunächst den Goldpreis und stellt fest, dass dieser in den ersten 4 Tagen durch die Funktion beschrieben werden kann. Dabei ist in Tagen und in (Preis in Euro pro Gramm) angegeben. Berechne den Durchschnittspreis in den ersten 4 Tagen.

Goldbarren


Aufgabe 3: Bakterien

Hierfür benötigst du einen Zettel und einen Stift.

In einem Labor werden Bakterien gezüchtet. Die Anzahl der Bakterien innerhalb von 10 Tagen ist durch die Funktion gegeben , wobei für die Anzahl der Tage mit steht.

Bakterien in einer Petrischale

a) Wie viele Bakterien gibt es am 8. Tag?

b) Wie viele Bakterien gibt es in den ersten 8 Tagen im Durchschnitt?

c) Wie viele Bakterien werden durchschnittlich zwischen dem 2. und 4. Tag gezüchtet?


Aufgabe 4: Integrieren mit dem Hauptsatz der Differential- und Integralrechnung

Hierfür benötigst du einen Zettel und einen Stift.

Die Abbildung zeigt den Graphen der Funktion mit

Schaubild der Funktion

a) Welchen Wert erhältst du für das Integral im Intervall ?


b) Wie lautet der Mittelwert?


Aufgabe 5: Das Kirchenfenster

Hierfür benötigst du einen Zettel und einen Stift.

Kirchenfenster

Ein Kirchenfenster wird oben durch die Funktion im Intervall begrenzt, und in Metern. Wie viel Glas wurde benötigt?

Partielle Integration

Partielle Integration

Die partielle Integration ist eine Methode, die die Integration von Produkten zweier Funktionen ermöglicht. Sie beruht auf der Produktregel und wird daher auch Produktintegration genannt. Dabei ist es von Vorteil, wenn die eine Funktion leicht abzuleiten und die andere leicht zu integrieren ist.

Allgemein definiert man die Formel der partiellen Integration so:

Dabei ist das ursprüngliche Integral.

ist die leicht zu integrierende Funktion.

ist die leicht abzuleitende Funktion.

Integration durch Substitution

Integration durch Substitution

Die Integration durch Substitution ist eine weitere Methode der Integration, welche auf der Kettenregel beruht. Dabei muss eine Verknüpfung zweier Funktionen innerhalb dieses Integrals vorhanden sein. Allgemein wird ihre Formel folgendermaßen definiert:

Vorgehen:


  1. Zunächst wird die innere Funktion dieser verknüpften Funktion durch eine Variable ersetzt. Also
  2. Die Gleichung wird nach abgeleitet. Also
  3. und dann nach umgeformt:
  4. Falls im Integral die Grenzen und angegeben wurden, müssen diese durch Einsetzen in die Gleichung angepasst werden. Dazu wird die untere Grenze in die Funktion . Dadurch wird die neue untere Grenze. Das gleiche Verfahren wird auch für die obere Grenze verwendet, sodass die neue obere Grenze ist.
  5. Die nach umgeformte Gleichung und die neuen Grenzen werden nun in das Integral eingesetzt.
  6. Nun folgt das normale Integrationsverfahren. Also:
  7. Die Resubstitution ist nun der letzte Schritt, in dem das Ersetzen der inneren Funktion durch die Variable wieder rückgängig gemacht wird. Das heißt:

Aufgaben zu den verschiedenen Integrationsverfahren

Aufgabe 6: Integration von komplexeren Funktionen

Bestimme jeweils die Stammfunktion der Funktion und falls angegeben den Wert des bestimmten Intervalls. Hierfür benötigt ihr einen Zettel und einen Stift, um die Funktion schriftlich zu integrieren.

a)


b) im Intervall


c)


d)


e) im Intervall


Aufgabe 7: Stammfunktionen zuordnen

Ordne die Funktionen ihren passenden Stammfunktionen zu!

Flächeninhalte von Integralen

Aufgabe 8: Flächeninhalte berechnen

Berechne den Flächeninhalt der folgenden Integrale! Dafür wirst du für ein paar Aufgaben einen Zettel und einen Stift benötigen.


Aufgabe 9: Zahnlogo
Skizze des Zahn-Logos
In einer Zahnarztpraxis soll ein neues Logo entworfen werden. Dazu wurde die nebenstehende Zeichnung angefertigt, welche durch die Funktionen und das Zahnlogo bildet. Dabei entspricht eine Längeneinheit in dem Graphen 1 cm. Nun soll dieses Logo mit einer Dicke von 1 mm aus Silber (1 cm3 Silber wiegt 10,5 g) produziert werden. Wie schwer wird das Logo dann werden?


Bearbeite diese Textaufgabe am besten schriftlich auf einem Zettel.


Rotationskörper (Zusatz: nur für LK's)

⭐ Rotationskörper und Raumintegrale

Lässt man den Graphen einer Funktion um die x-Achse rotieren, so entsteht ein sogenannter Rotationskörper. Für seinen Rauminhalt gilt .

Hier ein weiteres Beispiel einer Sinus-Funktion, das veranschaulicht, wie du dir Rotationskörper vorstellen kannst.


⭐ Aufgabe 10: Rotationskörper und Raumintegrale
Funktionsgraph von .
Bearbeite diese Aufgabe am besten schriftlich auf einem Zettel.

Gegeben sei die Funktion mit . Die Fläche von rotiere um die -Achse.

Berechne den Inhalt des entstehenden Drehkörpers:

a) im Intervall

b) im Intervall



⭐ Aufgabe 11: Rotationskörper und Raumintegrale
Funktionsgraphen von (orange) und (lila).
Sei eine Funktion gegeben mit sowie die Funktion mit .

Die Graphen von und begrenzen mit der -Achse eine Fläche.

Berechne den Inhalt des Körpers, der entsteht, wenn diese Fläche um die -Achse rotiert.

Bearbeite diese Aufgabe am besten schriftlich auf einem Zettel.