Benutzer:Buss-Haskert/Körper/Kugel

Aus ZUM Projektwiki
Schullogo HLR.jpg


3) Kugel

1) Volumen

Experimentelle Bestimmung der Volumenformel der Kugel

Experiment zur Volumenbestimmung
Kugel und Zylinder Höhe gleich Durchmesser Kugel.png

Vorne am Pult liegen ein offener Zylinder und eine Kugel. Die Höhe des Zylinders und der Durchmesser der Grundfläche stimmt mit dem Durchmesser der Kugel überein.
Durchführung des Experiments: (Für den Unterricht auf Distanz habe ich unten das Experiment für dich durchgeführt und gefilmt. Schau dir das Video an.)

  • Fülle den Zylinder vollständig mit Wasser.
  • Tauche die Kugel in den Zylinder.
  • Schätze, welcher Bruchteil des Wassers durch die Kugel verdrängt wurde.


Was stellst du fest?

Welcher Zusammenhang besteht zwischen den Volumina von Kugel und Zylinder?



Welcher Bruchteil des Wassers im Zylinder wurde durch die Kugel verdrängt? _____

Also gilt: VKugel = ___∙ VZylinder   | Nun setzte die Volumenformel des Zylinders ein. Beachte, dass hZylinder = 2r.
Leite so die Formel für das Kugelvolumen her.


Du hast nun auf der Grundlage experimenteller Ergebnisse eine Formel für das Volumen einer Kugel aufgestellt.

Volumen einer Kugel

Das Volumen einer Kugel mit dem Radius r wird berechnet mit

V = ·𝞹 · r³



Übung 1

Löse die nachfolgenden Aufgaben aus dem Buch. Achte auf eine vollständige und übersichtliche Darstellung. Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann die gegebenen Werte ein und berechne die gesuchte Größe.

  • S. 54 Nr. 1
  • S. 54 Nr. 2

2) Oberfläche

Kugeln haben eine gekrümmte Oberfläche, man kann sie nicht in der Ebene abwickeln. Daher leiten wir die Formel durch Annäherung her:

Das nachfolgende GeoGebra-Applet veranschaulicht die Herleitung der Formel für die Oberfläche einer Kugel. Erkläre!


Wir zerlegen die Kugel in viele kleine Pyramiden, deren Grundflächen die Oberfläche der Kugel bilden.

Damit lässt sich die Oberflächenformel herleiten:

Herleitung Oberfläche Kugel.png


Oberfläche einer Kugel

Die Formel für die Oberfläche einer Kugel lautet:

O = 4𝞹r²



Mit dem Lied lernst du die Formeln spielend leicht auswendig:


Übung 2

Löse die nachfolgenden Aufgaben aus dem Buch. Achte auf eine vollständige und übersichtliche Darstellung. Notiere die Formel und stelle sie nach der gesuchten Größe um. Setze dann die gegebenen Werte ein und berechne die gesuchte Größe.

  • S. 56 Nr. 1
  • S. 56 Nr. 2
  • S. 57 Nr. 3
  • S. 57 Nr. 4
  • S. 57 Nr. 5
  • S. 57 Nr. 6



Anwendungsaufgaben

Anwendungsaufgabe
Holzwürfel.jpg
Der Holzwürfel hat eine Kantenlänge von 5 cm. Es soll eine möglichst große Kugel herausgearbeitet werden. Wie groß ist die Oberfläche und das Volumen dieser Kugel?
Übung 4

Löse die Aufgaben aus dem Buch. Sammle mindestens 8 Sterne.

  • S. 55 Nr. 3 *
  • S. 55 Nr. 4 *
  • S. 55 Nr. 5 **
  • S. 55 Nr. 6 ***
  • S. 55 Nr. 7 *
  • S. 55 Nr. 8 *
  • S. 55 Nr. 9 **
  • S. 55 Nr. 10 **
  • S. 55 Nr. 11 *
  • S. 57 Nr. 7 **
  • S. 57 Nr. 9 **
  • S. 57 Nr. 10 **
  • S. 57 Nr. 11 **
  • S. 57 Nr. 12 ***



Jetzt bist du dran...
Munster-588330 1920.jpg
Wo gibt es in deiner Umgebung Kegel? In Münster hast du bestimmt schon einmal die Kugeln am Aasee auf dem Foto gesehen.
Erfinde eine Aufgabe zu einer Kugel in deiner Umgebung und löse sie. Lade die Aufgabe im Gruppenordner bei IServ hoch.


Noch mehr Übungen findest du auf der Seite Aufgabenfuchs - Kugel.