Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Statistik
SEITE IM AUFBAU!
Statistik
Häufigkeiten
Absolute und relative Häufigkeit
Im Unterricht haben wir diese Begriffe eingeführt mit den Würfen auf einen Eimer. Die Jungen durften 20 mal werfen, die Mädchen 25 mal. Gezählt wurden dann die Treffer.
Wir ergänzen die Tabelle:
Name | Mats | Lisa | Kassem | Ida | Larissa | Henry | |
---|---|---|---|---|---|---|---|
Würfe insgesamt | 20 | 25 | 20 | 25 | 25 | 20 | |
Absolute Häufigkeit | Treffer | 10 | 11 | 13 | 12 | 16 | 12 |
Relative Häufigkeit |
|
① Absolut gesehen hat LARISSA die meisten Treffer.
② Für den relativen Vergleich müssen wir die Anteile betrachten.
Name | Bruch | Dezimalbruch | Prozent |
---|---|---|---|
Mats | = | 0,5 | 50% |
Lisa | = | 0,44 | 44% |
Kassem | = | 0,65 | 65% |
Ida | = | 0,48 | 48% |
Larissa | = | 0,64 | 64% |
Henry | = | 0,6 | 60% |
Kassem hat also gewonnen, denn 65 % seiner Würfe haben den Eimer getroffen.
Larissa hatte zwar absolut gesehen mehr Treffer aber „nur“ 64% ihrer Würfe haben den Eimer getroffen.
Diagramme
Liniendiagramm
Statistische Kennwerte
Werden in einer statistischen Erhebung Daten gesammelt (z.B. die verschiedenen Körpergrößen in einer Klasse), werden diese mithilfe von Kennwerten ausgewertet.
Die Daten werden zunächst in einer Urliste gesammelt. Ordnet man die Werte der Größe nach, so erhält man eine Rangliste.
Kennwert | Bedeutung |
---|---|
Minimum | kleinster Wert |
Maximum | größter Wert |
Spannweite | Differenz aus Maximum und Minimum |
Median/Zentralwert | Wert in der Mitte der Rangliste |
unteres Quartil | Median der unteren Hälfte |
oberes Quartil | Median der oberen Hälfte |
Quartilabstand | Differenz aus oberem und unterem Quartil |
Mittelwert (arithmetisches Mittel) | "Durchschnitt": Summe aller Werte geteilt durch Anzahl der Werte |
Boxplots