Benutzer:Buss-Haskert/Körper/Kegel: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
(Links erneuert) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 19: | Zeile 19: | ||
Ob Eistüte, Pylonen oder Turmspitzen, man findet sehr häufig kegelförmige Objekte in unserer Lebenswelt. | Ob Eistüte, Pylonen oder Turmspitzen, man findet sehr häufig kegelförmige Objekte in unserer Lebenswelt. | ||
<br> | <br> | ||
Originallink XnTH43Qa | |||
<ggb_applet id="XnTH43Qa" width="700" height="880" border="888888" /> | <ggb_applet id="XnTH43Qa" width="700" height="880" border="888888" /> | ||
<small>Applet von Martin Putzlocher</small> | |||
<br> | |||
===1) Merkmale von Kegeln=== | ===1) Merkmale von Kegeln=== | ||
{{Box|Merkmale von Kegeln|2= | {{Box|Merkmale von Kegeln|2= | ||
Zeile 43: | Zeile 46: | ||
{{Box|Übung 1|Zeichne das Schrägbild, wie im Video erklärt. Buch | {{Box|Übung 1|Zeichne das Schrägbild, wie im Video erklärt. Buch | ||
* S. 43 Nr. 7|Üben}} | * S. 43 Nr. 7|Üben}} | ||
Originallink https://www.geogebra.org/m/HXWSPGTN | |||
<br> | <br> | ||
<ggb_applet id="HXWSPGTN" width="1044" height="696" border="888888" /> | <ggb_applet id="HXWSPGTN" width="1044" height="696" border="888888" /> | ||
<small>Applet von Andreas Lindner</small> | |||
<br> | <br> | ||
{{Box|Netz eines Kegels|Schneide das Netz eines Kegels aus (AB liegt auf dem Pult) und falte daraus den Kegel. Klebe das Netz anschließend in dein Heft und beschreibe, aus welchen Teilflächen es besteht.<ref>https://www.zum.de/dwu/mkb114vs.htm</ref>|Lösung|Icon=brainy hdg-scissors}} | {{Box|Netz eines Kegels|Schneide das Netz eines Kegels aus (AB liegt auf dem Pult) und falte daraus den Kegel. Klebe das Netz anschließend in dein Heft und beschreibe, aus welchen Teilflächen es besteht.<ref>https://www.zum.de/dwu/mkb114vs.htm</ref>|Lösung|Icon=brainy hdg-scissors}} | ||
Zeile 66: | Zeile 71: | ||
Das nachfolgende Applet kann dir helfen: Kippe den Kegel mit dem Schieberegler und führe die Abwicklung aus.(Du kannst Radius und Höhe des Kegels verändern.) | Das nachfolgende Applet kann dir helfen: Kippe den Kegel mit dem Schieberegler und führe die Abwicklung aus.(Du kannst Radius und Höhe des Kegels verändern.) | ||
<br><ggb_applet id="J866RgCb" width="883" height="518" border="888888" /> | <br><ggb_applet id="J866RgCb" width="883" height="518" border="888888" /> | ||
<ggb_applet id="HXWSPGTN" width=" | Originallink https://www.geogebra.org/m/HXWSPGTN | ||
<ggb_applet id="HXWSPGTN" width="1044" height="696" border="888888" /> | |||
<small>Applet von Andreas Lindner</small> | |||
<br> | <br> | ||
{{Lösung versteckt|1=M= A<sub>Kreisausschnitt</sub> (mit dem Radius s)<br> | {{Lösung versteckt|1=M= A<sub>Kreisausschnitt</sub> (mit dem Radius s)<br> | ||
Zeile 160: | Zeile 167: | ||
{{Box|Volumen des Kegels|Du kannst die Formel für das Volumen eines Kegels auch mithilfe der Formel für die Pyramide herleiten. Eine weitere Möglichkeit ist die Annäherung durch Teilzylinder. Erkläre die folgenden GeoGebra-Applets.|Arbeitsmethode}} | {{Box|Volumen des Kegels|Du kannst die Formel für das Volumen eines Kegels auch mithilfe der Formel für die Pyramide herleiten. Eine weitere Möglichkeit ist die Annäherung durch Teilzylinder. Erkläre die folgenden GeoGebra-Applets.|Arbeitsmethode}} | ||
Originallink hwAXUV3B | |||
<ggb_applet id="hwAXUV3B" width="992" height="580" border="888888" /> | <ggb_applet id="hwAXUV3B" width="992" height="580" border="888888" /> | ||
<small>Applet von Wolfgang Wengler</small> | |||
<br> | <br> | ||
Originallink https://www.geogebra.org/m/P7dYRTb8 | |||
<ggb_applet id="P7dYRTb8" width="830" height="550" border="888888" /> | <ggb_applet id="P7dYRTb8" width="830" height="550" border="888888" /> | ||
<small>Applet von Andreas Lindner</small> | |||
<br> | <br> | ||
{{Box|1=Volumen eines Kegels|2=Das Volumen eines Kegels mit der Grundfläche G und der Höhe h<sub>K</sub> wird berechnet mit | {{Box|1=Volumen eines Kegels|2=Das Volumen eines Kegels mit der Grundfläche G und der Höhe h<sub>K</sub> wird berechnet mit |
Version vom 17. November 2023, 18:35 Uhr
2) Kegel
In der vorherigen Lerneinheit hast du die Pyramide mit einem beliebigen Vieleck als Grundfläche kennengelernt.
Ersetzt man nun das Vieleck der Grundfläche durch einen Kreis, so erhält man einen verwandten Spitzkörper: den Kegel!
. . . .. . . . . . . .
Ob Eistüte, Pylonen oder Turmspitzen, man findet sehr häufig kegelförmige Objekte in unserer Lebenswelt.
Originallink XnTH43Qa
Applet von Martin Putzlocher
1) Merkmale von Kegeln
Ziehe an der Kegelspitze S und beobachte, was passiert.
von T.Weiss
2) Schrägbild und Netz von Kegeln
Das Video zeigt dir, wie du das Schrägbild eines Kegels zeichnest:
Originallink https://www.geogebra.org/m/HXWSPGTN
Applet von Andreas Lindner
3) Oberfläche von Kegeln
Die Grundfläche ist ein Kreis und die Mantelfläche hat die Form eines Kreisausschnittes.
Formel: O = G + M.
Das nachfolgende Applet kann dir helfen: Kippe den Kegel mit dem Schieberegler und führe die Abwicklung aus.(Du kannst Radius und Höhe des Kegels verändern.)
Originallink https://www.geogebra.org/m/HXWSPGTN
Applet von Andreas Lindner
M= AKreisausschnitt (mit dem Radius s)
= 𝞹∙s²∙
aber: wir kennen α nicht
Ziehe den Punkt Schritt für Schritt weiter und erkläre, wie die Formel für die Oberfläche hergeleitet wird. (Link zum Original-Applet, falls es nicht vollständig dargestellt wird:https://www.geogebra.org/m/sfazkjgc)
Applet von Buß-Haskert
Wende zur Berechnungen der Längen r, hK oder s den Satz des Pythagoras im rechtwinkligen Hilfsdreieck mit den Katheten r und hK und der Hypotenuse s an.
Beispiel:
Umstellen der Mantelformel nach s:
M = 𝞹∙r∙s |:(𝞹∙r)
Setze die gegebenen Werte für M und r ein und berechne s.
Umstellen der Oberflächenformel nach s:
O = 𝞹∙r² + 𝞹∙r∙s |-𝞹∙r²
O - 𝞹∙r² = 𝞹∙r∙s |:(𝞹∙r)
Setze die gegebenen Werte für o und r ein und berechne s.
geg: s = 6,3 cm; O = 226 cm²
ges: r
O = 𝞹∙r² + 𝞹∙r∙s |Du musst also eine quadratische Gleichung lösen!
Setze die gegebenen Werte ein und bringe die Gleichung in die Normalform x² + px + q = 0 (hier ist r=x)
226 = 𝞹∙r² + 𝞹∙r∙6,3 |-226
0 = 𝞹∙r² + 𝞹∙r∙6,3 - 226 |:𝞹
0 = r² + 6,3∙r - 71,94 |pq-Formel mit p = 6,3 und q = -71,94
r1,2 = -3,15
Berechne die Länge des Weges, den er Kegel sich dreht. Dies ist der Umfang des Kreises mit dem Radius r=12cm.
Berechne dann den Umfang der Grundfläche des Kegels. Der Radius ist hier 5cm:2 = 2,5cm.
Lösung: 4,8 mal
Berechne zunächst die Oberfläche des Zylinders (O = 2G + M =2∙𝞹∙r² + 2∙𝞹∙r∙hK)
Berechne danach die Oberfläche des Zylinders.
Berechne nun den Unterschied zwischen den beiden Werten: OZylinder - OKegel
4) Volumen von Kegeln
Experimentelle Bestimmung der Volumenformel des Kegels
Du hast nun auf der Grundlage experimenteller Ergebnisse eine Formel für das Volumen eines Kegels aufgestellt.
Wie viele Kegelfüllungen passen in den Zylinder? _____
Also gilt:
VZylinder = ___∙ VKegel |umstellen nach VKegel
VKegel =___∙ VZylinder
Die Grundfläche G ist ein Kreis, also G = 𝞹∙r², setze in die Formel ein.
Originallink hwAXUV3B
Applet von Wolfgang Wengler
Originallink https://www.geogebra.org/m/P7dYRTb8
Applet von Andreas Lindner
r² + hK² = s² |-r²
hK² = s² - r² |
r² + hK² = s² |-h²
r² = s² - hK² |
Umstellen der Formel nach hK:
V = ∙𝞹∙r²∙hK |∙3
3V = 𝞹∙r²∙hK |:(𝞹∙r²)
Das Volumen des Restkörpers beträgt des Volumens des ganzen Kegels, also
Oberfläche des Restkörpers beträgt der Oberfläche des ganzen Kegels, zusätzlich musst du die Flächen der zwei (rechtwinkligen) Dreiecke, die sich an den Schnittstellen ergeben, addieren.
Anwendungsaufgaben
Bestimme mithilfe des Mauerumfangs den Radius des Zylinders (Turm) r.
Das Dach steht 30 cm über, also gilt rDach = r + 0,3.
Wie geht Prozentrechung?
W = G · p%.
geg: G = Mantelfläche; p% = 3% (=0,03 als Dezimalbruch).
Berechne, wie viel Material hinzugegeben werden muss (W), und addiere dann W + G = G+
Oder berechne sofort G+
G = M und p+% = 103% = 1,03
Bestimme r mithilfe des angegebenen Umfangs u.
Bestimme das Volumen eines Kegels mit den angegebenen Maßen.
Bestimme V1 und V2.
Für die benötigte Zeit betrachte das Verhältnis von = ...
Die dementsprechend vielfache Zeit wird dann benötigt.
1. Bestimme das Volumen des Gewürzkegels. Entnimm die Maße dem Bild im Buch.
2. Bestimme das Volumen einer zylindrischen Dose.
Die Dichte von 7,8 gibt an, dass 1cm³ 7,8g wiegt.
Das Verhältnis von Radius zur Höhe bleibt gleich (Strahlensatz), also r = 1 cm und hK = 3; r = hK.
Noch mehr Übungen findest du auf der Seite Aufgabenfuchs - Kegel.