Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Größen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 266: Zeile 266:
{{Box|Zeitspannen berechnen|
{{Box|Zeitspannen berechnen|
[[Datei:Merkkasten Pfeilbilder.jpg|600px]]|Merksatz}}
[[Datei:Merkkasten Pfeilbilder.jpg|600px]]|Merksatz}}
ERGÄNZEN auch Dezimalbruch von Stunden in Minuten umwandeln, <br>
<br>
{{Box|1=Zeitangaben als Dezimalbruch umwandeln|2=Ist eine Zeitangabe als Dezimalbruch angegeben, also z.B. 0,2 Stunden, so kannst du dies auch in Minuten umwandeln, z.B. mit dem Dreisatz:<br>
{{(!}} class=wikitable
{{!-}}
{{!}} 1 h
{{!}} 60 min
{{!-}}
{{!}} 0,1 h
{{!}} 6 min
{{!-}}
{{!}} 0,2 h
{{!}} 12 min
{{!)}}
oder kurz: 0,2·60 = 12|3=Kurzinfo}}
i{
{{Box|1=Geschwindigkeit v|2=Die Geschwindigkeit gibt an, welche Strecke in welcher Zeit zurückgelegt wird. Es gilt also<br>
{{Box|1=Geschwindigkeit v|2=Die Geschwindigkeit gibt an, welche Strecke in welcher Zeit zurückgelegt wird. Es gilt also<br>
Geschwindigkeit = <math>\tfrac{Weg}{Zeit}</math><br>
Geschwindigkeit = <math>\tfrac{Weg}{Zeit}</math><br>

Version vom 4. Juli 2023, 04:55 Uhr

Schullogo HLR.jpg


Schulbuch: Schnittpunkt Mathematik 10 - Differenzierende Ausgabe, Klett-Verlag


Einstiegstest: Zahlen und Größen (hilfsmittelfreier Teil)

1 Schätze, wie viele Maiskörner auf dem Tisch liegen.

Maiskörner schätzen.jpg

140-160
240-260
340-360

2 Die Einnahmen eines Schulfestes betrugen auf Hunderter gerundet 2500€. Wie viel Geld wurde mindestens, wie viel höchstens eingenommen?

mindestens 2450€
mindestens 2499€
höchstens 2550€
höchstens 2549€

3 Welche Aussagen sind richtig?

= 0,6
= 0,35
65% <
65% >
- > - 0,45

4 Ordne die Zahlen der Größe nach. ; -0,623; -6,23;

-0,623 < -6,23 < <
-0,623 < -6,23 < <
-6,23 < -0,623 < <
-6,23 < -0,623 < <

5 Kreuze die richtige Aussage an.

2,8

6 Zwischen welchen natürlichen Zahlen liegt ?

zwischen 4 und 5
zwischen 5 und 6
zwischen 6 und 7

7 Gib die Zahl ohne Zehnerpotenz an. 1,3·10-4

0,00013
0,0013
0,013
0,13

8 Welche Aussagen sind richtig? 12,5 m = ...

125 cm
1250 cm
125 dm
0,0125 km
0,125 km

9 Welche Aussagen sind richtig? 24 ha = ...

240 m²
2400 m²
240000 m²
2,4 km²
0,24 km²

10 Welche Aussagen sind richtig? 65000 cm³ = ...

6500 dm³
650 dm³
65 dm³
6,5 l
65 l

11 Kreuze die richtigen Aussagen an.

3 kg = 3000 g
1,8·103 g = 1,8 kg
7,879 kg ≈ 8 t
50 g = 0,5 kg

12 Kreuze die richtigen Aussagen an.

136 min = 1h 36 min
4,2 h = 4h 12 min
1,5 h = 150 min
185 min = 3h 5min

13 Ein Käfer wird auf einem Foto vergrößert dargestellt. 2,5 cm auf dem Bild entsprechen 1 cm in Wirklichkeit (Maßstab 2,5:1). Wie lang ist der Käfer, wenn er auf dem Bild 6 cm misst?

2 cm
2,4 cm
15 cm


Auswertung des Eingangstests

Schau, welche Aufgaben du schon gut lösen konntest und bei welchen du noch Schwierigkeiten hattest. Übe dann passend.

  • Schätzen 1
  • Zahlen runden 2
  • Bruch, Dezimalbruch, Prozent 3
  • Zahlbereiche 4-7
  • Größen 8-12
  • Maßstab 13
Übungen

Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen.

  • Bruch, Dezimalbruch, Prozent: S. 140
  • Größen: S. 141

1. Zahlen

Wiederholung Bruchrechnung

  • Brüche erweitern und kürzen
Erweitern und Kürzen


Beim Erweitern eines Bruches werden Zähler und Nenner mit derselben Zahl multipliziert. Die Einteilung wird feiner.

                =                =        
Erweitert mit 4.pngErweitert mit 4 Rechteck.jpg
Bruch und erweiterter Bruch haben denselben Wert.


Beim Kürzen eines Bruches werden Zähler und Nenner durch derselbe Zahl dividiert. Die Einteilung wird gröber.

        =                        =        
Kürzen mit 5.pngGekürzt mit 5 Rechteck.jpg

Bruch und gekürzter Bruch haben denselben Wert.


  • Brüche in gemischter Schreibweise und als unechter Bruch
Merke: Unechte Brüche und Gemischte Zahlen
Unechte Brüche und gemischte Zahlen neu mit Bild.jpg
Übung

Bearbeite die Aufgaben auf der Seite realmath.

  • Bruch, Dezimalbruch, Prozent
Prozentangaben in Brüche umwandeln

Du kannst Prozentangaben in Brüche umwandeln:

75% = =
75% sind 3 4tel mit Bruchstreifen.png
40% = =
40% gleich 2 5tel mit Bruchstreifen.png

Und nun ohne Bild:

32% = = (gekürzt).


Brüche in Prozentangaben umwandeln

Und nun umgekehrt: Wandle die Brüche in Prozentangaben um. Du benötigst also den Nenner 100!

= = 30%
3 10er sind 30% mit Bruchstreifen.png
= = 35%
7 20tel sind 35% mit Bruchstreifen.png

Und nun ohne Bild:

= = 32%.



  • Brüche addieren und subtrahieren


Ungleichnamige Brüche addieren und subtrahieren
Merkkasten - Addieren und Subtrahieren ungleichnamiger Brüche.jpg


Übung
Löse die folgenden LeraningApps-Kollektion. Melde dich mit deiner Klasse und deinem Vornamen an (Beispiel: 6c Tina)


Ungleichnamige Brüche in gemischter Schreibweise addieren (subtrahieren)

Wandle zunächst die Brüche in gemischter Schreibweise in unechte Brüche um. Dann rechnest du wie oben:
1. Umwandeln in die gemischte Schreibweise
2. Gleichnamig machen
3. Zähler addieren (subtrahieren), Nenner bleibt gleich

4. Das Ergebnis - falls möglich - kürzen und in die gemischte Schreibweise umwandeln.

Ungleichnamige Brüche in gemischter Schreibweise addieren Beispiel.png

Ungleichnamige Brüche in gemischter Schreibweise addieren 2. Möglichkeit.png



Eine weitere Möglichkeit ungleichnamige Brüche in gemischter Schreibweise zu addieren besteht darin, zuerst die Ganzen zu addieren:

  • Brüche multiplizieren und dividieren


Hefteintrag: Brüche multiplizieren (Bruch mal Bruch)
Merkkasten - Brüche multiplizieren neu.jpg



Hefteintrag: Brüche dividieren (Bruch durch Bruch)
Merkkasten neu (Lernpfad) - Brüche dividieren.jpg



2. Längen-, Flächen- und Volumeneinheiten umwandeln

Merke: Längeneinheiten und Umrechnungszahlen
Merkkasten Längeneinheiten umwandeln mit Umrechnungszahl.jpg


Flächeneinheiten umwandeln

Die Umwandlungszahl bei Flächenmaßen ist 100.

Einheitentreppe Flächeneinheiten.jpg



Volumeneinheiten umwandeln

Die Umwandlungszahl bei Volumina (Rauminhalten) ist 1000.

Volumentreppe Bild.png

3. Maßstab

Einstiegsaufgabe: Klassenfahrt

Die 10er Klassen der Herta-Lebenstein-Realschule fahren als Abschlussfahrt nach Berlin.
Wie weit ist es von Stadtlohn nach Berlin (Luftlinie), wenn du auf der Karte die Entfernung 4,5 cm misst?

Berate dich mit deiner Sitznachbarin/ deinem Sitznachbarn.
Einstieg Maßstab Stadlohn Berlin 1.PNG


Maßstab

Der Maßstab einer Karte gibt an, wievielmal größer die Strecke auf der Karte in Wirklichkeit ist.
Maßstab Beispiel 1 zu 10 000 000 neu.png

1 cm in der Karte sind 10000000 cm in Wirklichkeit, also 100 km.

Löse nun das Einstiegsbeispiel:
Maßstab Beispiel 1 mit Zahlbeispiel.png
Die Entfernung zwischen Stadtlohn und Berlin beträgt also ca. 450 km Luftlinie.





Maßstab - Vergrößerte Darstellungen
Marienkäfer.PNG
Dieser Marienkäfer ist vergrößert dargestellt.

Der Maßstab beträgt 4:1.

Wie lang ist der Marienkäfer in Wirklichkeit, wenn er in der Zeichnung 36 mm lang ist?

Auch hier hilft dir die Tabelle weiter:

Maßstab Bild Wirklichkeit
4 : 1 4 mm 1 mm
36 mm ? mm


3. Gewichtseinheiten umwandeln

Gewichtseinheiten und Umrechnungszahlen
Merkkasten Gewichtseinheiten umwandeln mit Umrechnungszahl.jpg


ERGÄNZEN + Dichte

4. Zeiteinheiten umwandeln

Zeiteinheiten umwandeln
Zeiteinheiten umwandeln.jpg
Zeitspannen berechnen
Merkkasten Pfeilbilder.jpg


Zeitangaben als Dezimalbruch umwandeln

Ist eine Zeitangabe als Dezimalbruch angegeben, also z.B. 0,2 Stunden, so kannst du dies auch in Minuten umwandeln, z.B. mit dem Dreisatz:

1 h 60 min
0,1 h 6 min
0,2 h 12 min
oder kurz: 0,2·60 = 12

i{

Geschwindigkeit v

Die Geschwindigkeit gibt an, welche Strecke in welcher Zeit zurückgelegt wird. Es gilt also
Geschwindigkeit =
v = .
Die Einheit der Geschwindigkeit ist oder .
Einheiten umwandeln: 25 = 25 = = 6,94

10 = 10 = 36