Benutzer:Buss-Haskert/Pythagoras/Anwendungen: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 91: | Zeile 91: | ||
{{Fortsetzung|weiter=3.2 Anwendungen im Raum|weiterlink=Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen im Raum | {{Fortsetzung|weiter=3.2 Anwendungen im Raum|weiterlink=Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen im Raum}} |
Aktuelle Version vom 25. Februar 2022, 07:45 Uhr
1) Rechtwinklige Dreiecke zeichnen mit dem Satz des Thales
2) Satz des Pythagoras
3) Anwendungen
3.1) Anwendungen in geometrischen Figuren
3.2) Anwendungen im Raum
3.3) Anwendungen in Sachsituationen
3) Satz des Pythagoras - Anwendungen
Der Satz des Pythagoras gilt für rechtwinklige Dreiecke. Wenn kein rechtwinkliges Dreieck vorliegt, musst du die Figur in rechtwinklige Teildreiecke zerlegen. Dann kannst du in diesen Teildreiecken fehlende Seitenlängen mit dem Satz des Pythagoras berechnen.
3.1 Anwendungen in geometrischen Figuren
Einführungsbeispiel:
Bestimme den Umfang und den Flächeninhalt des rechtwinkligen Trapezes:
Um die Länge der Seite b zu bestimme gehe schrittweise vor:
1. Zerlege die Figur so, dass die gesuchte Seite b eine Seite in einem rechtwinkligen Dreieck ist.
2. Überlege, ob die Seite eine Kathete oder die Hypotenuse in diesem Dreieck ist und stelle den Satz des Pythagoras richtig auf.
3. Berechne die Länge der Seite b mithilfe des Satzes von Pythagoras. Runde sinnvoll.
2² + 5² = b² |
= b
4. Löse die Aufgabe: Berechne den Umfang und den Flächeninhalt der Figur.
Umfang u = a + b + c + d = 7 + 5,4 + 2 + 2 = 16,4 (cm)
Dieses Video zeigt die Berechnungen für eine symmetrisches Trapez:
.
Hefteintrag zu Nr. 1:
Beschrifte in der Skizze die zweite Kathete im linken rechtwinkligen Dreieck mit z.B. "a".
linkes Dreieck:
15² + a² = 39² |-15²
a² = 39² - 15² |
a = (Taschenrechner)
a = 36 (cm)
rechtes Dreieck:
a² + x² = 47²
36² + x² = 47² |-36²
x² = 47² - 36² |
x = (Taschenrechner)
x 30,2 (cm)
Teile die Figuren jeweils in ein Rechteck und ein rechtwinkliges Dreieck ein. Berechne dann mit Pythagoras die fehlenden Seitenlängen.
Teile die Figuren in ein Rechteck und ein rechtwinkliges Dreieck ein.
Die Figuren sind jeweils Trapeze. Wiederhole die Flächeninhaltsformel für das Trapez (Schulbegleiter).
Zerlege die Figur in zwei rechtwinklige Dreiecke, indem du die Diagonale von links oben nach rechts unten zeichnest. Berechne dann zunächst die Länge der Diagonale und damit die Länge der fehlenden Seite.
Hilfsvideos zu den Aufgaben S. 114 Nr. 5 und S. 122 Nr. 4: