Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 50: | Zeile 50: | ||
+ Die Gerade schneidet die y-Achse im negativen Bereich. | + Die Gerade schneidet die y-Achse im negativen Bereich. | ||
- Die Gerade schneidet die y-Achse im positiven Bereich. | - Die Gerade schneidet die y-Achse im positiven Bereich. | ||
{ Welche Gleichung passt zum Geraden? | { Welche Gleichung passt zum Geraden? | ||
Zeile 80: | Zeile 76: | ||
- y = 1x | - y = 1x | ||
- y = 1x + 3 | - y = 1x + 3 | ||
{ Liegt der Punkt P(2|-8) auf der Geraden mit der Gleichung f(x) = -5x + 2? Prüfe durch eine Rechnung.} | |||
+ Ja | |||
- Nein | |||
{ Bestimme die Nullstelle der Funktion f(x) = -2x + 5. Berechne im Heft.} | { Bestimme die Nullstelle der Funktion f(x) = -2x + 5. Berechne im Heft.} | ||
- x = 5 | - x = 5 | ||
- x = 2 | - x = 2 | ||
Zeile 88: | Zeile 87: | ||
- x = -2,5 | - x = -2,5 | ||
{ Kreuze die richtigen Aussagen an. Die Gerade mit der Gleichung f(x) = -3x + 6 ...} | { Kreuze die richtigen Aussagen an. Die Gerade mit der Gleichung f(x) = -3x + 6...} | ||
- hat keine Nullstelle | - hat keine Nullstelle | ||
+ schneidet die x-Achse bei x = 2 | + schneidet die x-Achse bei x = 2 |
Version vom 27. Januar 2023, 18:04 Uhr
Lineare und quadratische Funktionen
Einstiegstest: Lineare Funktionen (hilfsmittelfreier Teil)
Einstiegstest: Quadratische Funktionen (hilfsmittelfreier Teil)
Funktionen
Lineare Funktionen
Diese Eigenschaften werden in folgendem Lied besungen.
Hier heißt die Funktionsgleichung f(x) = mx + n (n statt b, du findest in verschiedenen Büchern verschiedene Bezeichnungen).
Lineare Funktionen: Wertetabelle
Lineare Funktionen: Gleichung und Graph
Beispiele:
Beispiel 1: Punkt-Steigungsform
geg: m = -1 und P(2|3)
ges: Funktionsgleichung der linearen Funktion
Idee: Setze m und die Koordinaten des Punktes in die Gleichung y = mx + b ein und bestimme so b.
f(x) = mx + b |m=-1 und P(2|3) einsetzen
3 = -1·2 + b |vereinfachen
3 = -2 + b |+2
5 = b
Also lautet die Funktionsgleichung f(x) = -1x + 5.
Beispiel 2: Zwei-Punkte-Form
geg: P(1|5) und Q(3|1)
ges: Funktionsgleichung der linearen Funktion
Bestimme die Steiung m: m = = = = -2
Bestimme b durch Einsetzen von m und einem der Punkte P oder Q in die Gleichung y = mx + b.
f(x) = mx + b |m=-2 und P(1|5) einsetzen
5 = -2·1 + b |vereinfachen
5 = -2 + b |+2
7 = b
Also lautet die Funktionsgleichung f(x) = -2x + 7.
Erkläre, wie du das Steigungsdreieck zwischen den Punkten P und Q einzeichnen kannst und wie du damit die Steigung m bestimmen kannst.
Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.
Lineare Funktionen: Nullstellen bestimmen
Lineare Funktionen: Punktprobe
Quadratische Funktionen
Die Scheitelpunktform quadratischer Funktionen
Quadratische Funktionen: Scheitelpunktform und Normalform
Du kannst die Formen der Quadratischen Funktionen umwandeln:
Beispiel:
f(x) = (x + 3)² - 4 |1. binomische Formel
= x² + 2·x·3 + 3² - 4
= x² + 6x + 9 - 4
= x² + 6x + 5
Die Normalform eignet sich gut zur Nullstellenberechnung, denn hier kannst du die p-q-Formel anwenden.
Beispiel:
f(x) = x² + 8x - 4 |quadratische Ergänzung = 4² = 16
= x² + 8x + 16 - 16 - 4 |1. binomische Formel
= (x + 4)² - 16 - 4
= (x + 4)² - 20
Also lautet der Scheitelpunkt S(-4|-20)
Quadratische Funktionen: Nullstellen bestimmen
Ist die Parabelgleichung in der Scheitelpunktform gegeben, kannst du die Anzahl der Nullstellen erkennen.
Je nach Lage des Scheitelpunktes und der Öffnung der Parabel hat diese keine, eine oder zwei Nullstellen:
Tipp: Bestimme zunächst die Lage des Scheitelpunktes und die Öffnungsrichtung der Parabel. Ordne dann passend zu:
keine | f(x) = x² + 3 | f(x) = -2x² - 5 | f(x) = (x+2)² + 1 |
eine | f(x) = x² | f(x) = (x - 4)² | f(x) = -(x+2)² |
zwei | f(x) = x² - 3 | f(x) = -2x² + 5 | f(x) = (x+2)² - 1 |
1. Form: f(x) = ax²
Beispiel: f(x) = 3x²
f(x) = 0
3x² = 0 |:3
x² = 0 |
x = 0
N(0|0)
Natürlich hat jede Parabel mit der Funktionsgleichung f(x) = ax² die Nullstelle N(0|0), denn ihr Scheitelpunkt liegt im Ursprung. Der Scheitelpunkt ist also die Nullstelle.
2. Form: f(x) = ax² + c
Beispiel: f(x) = 0,5x² - 8
f(x) = 0
0,5x² - 8 = 0 |+8
0,5x² = 8 |:0,5
x² = 16 |
x1 = - und x2 = +
x1 = -4 und x2 = +4
N1(-4|0) und N2(4|0)
3. Form: Scheitelpunktform f(x) = a(x+d)²+e
Beispiel: f(x) = 2(x + 2)² - 18
f(x) = 0
2(x + 2)² - 18 = 0 |+18
2(x + 2)² = 18 |:2
(x + 2)² = 9 |
x1 + 2 = - und x2 + 2 = +
x1 + 2 = -3 und x2 + 2 = 3 |-2
x1 = - 3 - 2 und x2 = + 3 - 2
x1 = -5 und x2 = 1
N1(-5|0) und N2(1|0)
Der Scheitelpunkt der Parabel liegt immer in der Mitte zwischen den beiden Nullstellen. Die x-Koordinate des Scheitelpunktes muss also -2 heißen. (x-Koordinate zwischen x = -5 und x = 1).
Dies passt zum Scheitelpunkt S(-2|-18), der aus der Parabelgleichung abgelesen werden kann.
4. Form: Normalform f(x) = x² + px + q
Lösung mit der p-q-Formel:
Normalform: f(x) = x² + px + q
x² + px + q = 0
x1/2 = -
Beispiel: f(x) = x² -6x + 5
f(x) = 0
x² - 6x + 5 = 0 | pq-Formel mit p=-6 und q=5
x1/2 = -
x1/2 = 3
x1/2 = 3
x1/2 = 32
x1 = 3 - 2 = 1 ; x2 = 3+2 = 5
N1(1|0) und N2(5|0)
4. Form: Normalform f(x) = x² + px + q (mit quadratischer Ergänzung )
Beispiel: f(x) = x² -6x + 5
f(x) = 0
x² - 6x + 5 = 0 | quadratische Ergänzung
x² - 6x + 3² - 3² + 5 = 0 | 2. binomische Formel
(x - 3)² - 9 + 5 = 0
(x - 3)² - 4 = 0 | nun hast du wieder die Scheitelpunktform und geht wie in Bsp 3 vor: +4
(x - 3)² = 4 |
x1 - 3 = -2 und x2 - 3 = 2 |+3
x1 = -2 + 3 und x2 = 2 + 3
x1 = 1 und x2 = 5
5. Form: allgemeine Form f(x) = ax² + bx + c
Wandle zunächst in die Normalform um.
Wende dann wieder die p-q-Formel an.
Beispiel: f(x) = 2x² + 12x + 10
f(x) = 0
2x² + 12x + 10 = 0 |:2 (Ziel: Normalform)
x² + 6x + 5 = 0 | pq-Formel mit p=6 und q=5
x1/2 = -
x1/2 = -3
x1/2 = -3
x1/2 = -32
x1 = -3 - 2 = -5 ; x2 = -3+2 = -1
N1(-5|0) und N2(-1|0)
Quadratische Funktionen: Funktionsgleichung aufstellen
Beispiel:
Eine Parabel hat den Scheitelpunkt S(0|-3) und geht durch den Punkt P(2|-2).
f(x) = a(x + d)² + e |Setze für d=0 und e=-3 ein
f(x) = a(x - 0) + (-3)
f(x) = ax² - 3 |Setze die Koordinaten des Punkte P ein (Punktprobe)
-2 = a·2² - 3
-2 = 4a - 3 |+3
1 = 4a |:4
= a
Also lautet die Funktionsgleichung der Parabel f(x) = x² - 3.
Modellieren - Anwendungsaufgaben
Es gibt besondere Punkte, die in Anwendungen immer wieder von Bedeutung sind:
- Scheitelpunkt
- Nullstellen
- Schnittpunkt mit der y-Achse
- Koordinaten eines beliebigen Punktes
Verwende zur Lösung der Aufgabe die verschiedenen Darstellungsformen und die wiederholten Methoden zur Berechnung der verschiedenen besonderen Punkte.