Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen im Raum: Unterschied zwischen den Versionen
(Unterseite) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 1: | Zeile 1: | ||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}} | |||
<br> | |||
{{Navigation|[[Benutzer:Buss-Haskert/Pythagoras| Satz des Pythagoras - Startseite]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Satz des Thales| 1) Rechtwinklige Dreiecke zeichnen mit dem Satz des Thales]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Satz des Pythagoras|2) Satz des Pythagoras]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Anwendungen|3) Anwendungen]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Anwendungen|3.1) Anwendungen in geometrischen Figuren]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen im Raum|3.2) Anwendungen im Raum]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen in Sachsituationen|3.3) Anwendungen in Sachsituationen]]<br> | |||
[[Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen im Koordiantensystem|3.4 Anwendungen im Koordinatensystem]]}} | |||
<br /> | |||
===3.2 Anwendungen im Raum=== | ===3.2 Anwendungen im Raum=== | ||
=====Pythagoras im Würfel und Quader===== | =====Pythagoras im Würfel und Quader===== | ||
Zeile 82: | Zeile 94: | ||
{{Lösung versteckt|Teildreiecke:<br> | {{Lösung versteckt|Teildreiecke:<br> | ||
[[Datei:Tipp zu Aufgabenfuchs Nr. 58.png|rahmenlos]]|Teildreieck zu Aufgabe 58|Verbergen}} | [[Datei:Tipp zu Aufgabenfuchs Nr. 58.png|rahmenlos]]|Teildreieck zu Aufgabe 58|Verbergen}} | ||
{{Fortsetzung|weiter=3.3 Anwendungen in Sachsituationen|weiterlink=Benutzer:Buss-Haskert/Pythagoras/Anwendungen/Anwendungen in Sachsituationen}} |
Version vom 19. Februar 2022, 10:58 Uhr
1) Rechtwinklige Dreiecke zeichnen mit dem Satz des Thales
2) Satz des Pythagoras
3) Anwendungen
3.1) Anwendungen in geometrischen Figuren
3.2) Anwendungen im Raum
3.3) Anwendungen in Sachsituationen
3.2 Anwendungen im Raum
Pythagoras im Würfel und Quader
Um rechtwinklige Teildreiecke in Körpern zu erkennen, ist es hilfreich, ein Kantenmodell dieses Körpers zu erstellen. Dies kannst du basteln mit Holzspießen und Erbsen oder Weingummi.
Kantenmodell eines Würfels:
Kantenmodell eines Quaders:
Simulation zu Nr. 4 rechts: Du kannst den Würfel drehen.
Hinweise zu Pythagoras im Würfel:
Pythagoras in der quadratischen Pyramide
Kantenmodell einer quadratischen Pyramide:
Hilfsdreieck 1: halber Parallelschnitt
Die Katheten in diesem rechtwinkligen Dreieck sind die halbe Grundseite und die Höhe der Pyramide hK. Die Hypotenuse ist die Höhe der Seitenfläche hS.
Hilfsdreieck 2: halber Seitenfläche
Die Katheten in diesem rechtwinkligen Dreieck sind die halbe Grundseite und die Höhe der Seitenfläche hS. Die Hypotenuse ist die Seitenkante s .
Hilfsdreieck 3: halber Diagonalschnitt
Die Katheten in diesem rechtwinkligen Dreieck sind die halbe Diagonale der Grundseite und die Höhe der Pyramide hK. Die Hypotenuse ist die Seitenkante s .
Schau die Videos zu Pythagoras in der quadratischen Pyramide an. Diese helfen dir bei der Bearbeitung der Übung 6.