Benutzer:Buss-Haskert/Vorbereitungskurs ZP 10 Mathematik/Funktionen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 117: Zeile 117:
* Gleichung - Graph: S. 150, Nr. 5,6 und S. 122, P2 - 4
* Gleichung - Graph: S. 150, Nr. 5,6 und S. 122, P2 - 4
* Schnittpunkte mit den Koordinatenachsen: S. 122, P5 - 6
* Schnittpunkte mit den Koordinatenachsen: S. 122, P5 - 6
* Punktprobe: S. 122(123, P7 - P10|Üben}}
* Punktprobe: S. 122(123, P7 - P10)|Üben}}




Zeile 242: Zeile 242:
* Zeichne das Steigungsdreieck. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
* Zeichne das Steigungsdreieck. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
* Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.|Merksatz}}
* Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.|Merksatz}}
{{#ev:youtube|r6YopKFqk0c|500|left}}
Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = <math>{3 \over 5}</math>x - 1.<br>
Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = <math>{3 \over 5}</math>x - 1.
Schritt 1[[Datei:Gerade zur Gleichung zeichnen Schritt 1.png]]<br>
Schritt 1[[Datei:Gerade zur Gleichung zeichnen Schritt 1.png]]
Schritt 2[[Datei:Gerade zur Gleichung zeichnen 2. Schritt.png]]<br>
Schritt 2[[Datei:Gerade zur Gleichung zeichnen 2. Schritt.png]]
Schritt 3[[Datei:Gerade zur Gleichung zeichnen Schritt 3.png]]<br>
Schritt 3[[Datei:Gerade zur Gleichung zeichnen Schritt 3.png]]
|-
|-
!Video
!Video
Zeile 252: Zeile 251:
|-
|-
!Übung
!Übung
|[[https://realmath.de/Neues/Klasse8/linfkt/gerade-zeichnen-neu.php Übung realmath]]
|[https://realmath.de/Neues/Klasse8/linfkt/gerade-zeichnen-neu.php Übung realmath]
|}
|}




===Lineare Funktionen: Funktionsgleichung rechnerisch bestimmen===
===Lineare Funktionen: Funktionsgleichung rechnerisch bestimmen===
{{Box|Lineare Funktionen: Funktionsgleichung aufstellen mithilfe der Steigung und gegebener Punkte|Du kannst die Funktionsgleichung einer linearen Funktion auch rechnerisch bestimmen:
{|class=wikitable
|-
!Merksätze
|{{Box|Lineare Funktionen: Funktionsgleichung aufstellen mithilfe der Steigung und gegebener Punkte|Du kannst die Funktionsgleichung einer linearen Funktion auch rechnerisch bestimmen:
* Punkt-Steigungsform: die Steigung m und ein Punkt ist gegeben
* Punkt-Steigungsform: die Steigung m und ein Punkt ist gegeben
* Zwei-Punkte-Form: zwei Punkte sind gegeben (hier findest du Informationen in der Formelsammlung)|Merksatz}}
* Zwei-Punkte-Form: zwei Punkte sind gegeben (hier findest du Informationen in der Formelsammlung)|Merksatz}}
Zeile 282: Zeile 284:
{{Lösung versteckt|1=Erkläre, wie du das Steigungsdreieck zwischen den Punkten P und Q einzeichnen kannst und wie du damit die Steigung m bestimmen kannst.
{{Lösung versteckt|1=Erkläre, wie du das Steigungsdreieck zwischen den Punkten P und Q einzeichnen kannst und wie du damit die Steigung m bestimmen kannst.
[[Datei:Zwei-Punkte-Form von f(x)=-2x+7.png|rahmenlos|619x619px]]|2=Bild zur Bestimmung von m (Funktionsgraph)|3=Verbergen}}
[[Datei:Zwei-Punkte-Form von f(x)=-2x+7.png|rahmenlos|619x619px]]|2=Bild zur Bestimmung von m (Funktionsgraph)|3=Verbergen}}
{{Lösung versteckt|1=
|-
{{#ev:youtube|bE-yJzIqeIU|500|left}}|2=Video: Zwei-Punkteform der Geradengleichung|3=Verbergen}}
!Video
|{{#ev:youtube|bE-yJzIqeIU|500|left}}
|-
!Übung
|
|}


===Lineare Funktionen: Punktprobe===
===Lineare Funktionen: Punktprobe===
{{Box|1=Punktprobe|2=Wir können rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt. Dazu setzen wir die Koordinaten des Punktes P(<span style="color:red">x</span>I<span style="color:blue">y</span>) in die Funktionsgleichung <span style="color:blue">f(x)</span> = m<span style="color:red">x</span> + b ein. Der Punkt liegt auf dem Graphen, wenn sich eine wahre Aussage ergibt, die Gleichung also erfüllt ist.|3=Merksatz}}
{|class=wikitable
{{LearningApp|app= ppkr9n4sj20|width=100%|height=400px}}
|-
!Merksätze
|{{Box|1=Punktprobe|2=Wir können rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt. Dazu setzen wir die Koordinaten des Punktes P(<span style="color:red">x</span>I<span style="color:blue">y</span>) in die Funktionsgleichung <span style="color:blue">f(x)</span> = m<span style="color:red">x</span> + b ein. Der Punkt liegt auf dem Graphen, wenn sich eine wahre Aussage ergibt, die Gleichung also erfüllt ist.|3=Merksatz}}
|-
!Übung
|{{LearningApp|app= ppkr9n4sj20|width=80%|height=400px}}
|}




===Lineare Funktionen: Nullstellen bestimmen===
===Lineare Funktionen: Nullstellen bestimmen===
{{Box|1=Schnittpunkte mit den Koordinatenachsen|2=Für den Schnittpunkt P<sub>y</sub> mit der y-Achse (y-Achsenabschnitt) setzen wir x = 0 in die Funktionsgleichung ein berechnen b.  
{|class=wikitable
 
|-
P<sub>y</sub> (0&#124;b)
!Merksätze
 
|{{Box|1=Schnittpunkte mit den Koordinatenachsen|2=Für den Schnittpunkt P<sub>y</sub> mit der y-Achse (y-Achsenabschnitt) setzen wir x = 0 in die Funktionsgleichung ein berechnen b. <br>
P<sub>y</sub> (0&#124;b)<br>
Für den Schnittpunkt N mit der x-Achse (<b>Nullstelle</b>) setzen wir f(x) = 0 (oder y = 0) in die Funktionsgleichung ein und lösen die Gleichung nach x auf.
Für den Schnittpunkt N mit der x-Achse (<b>Nullstelle</b>) setzen wir f(x) = 0 (oder y = 0) in die Funktionsgleichung ein und lösen die Gleichung nach x auf.
N (x<sub>N</sub>I0)|3=Merksatz}}
N (x<sub>N</sub>I0)|3=Merksatz}}
[[Datei:Übersicht Schnittpunkte mit den Koordinatenachsen.png|Übersicht Schnittpunkte mit den Koordinatenachsen]]
[[Datei:Übersicht Schnittpunkte mit den Koordinatenachsen.png|Übersicht Schnittpunkte mit den Koordinatenachsen]]
{{LearningApp|app=pu8028csj20|width=100%|height=400px}}
|-
 
!Übung
 
|{{LearningApp|app=pu8028csj20|width=80%|height=400px}}
{{Box|Übung|Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch.
{{Box|Übung|Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch.
* S. 122, P2 - P9
* S. 122, P2 - P9
* S. 150, Nr. 3-6|Üben}}
* S. 150, Nr. 3-6|Üben}}
|}

Aktuelle Version vom 22. Februar 2025, 15:19 Uhr

Schullogo HLR.jpg


Schulbuch: Schnittpunkt Mathematik 10 - Differenzierende Ausgabe, Klett-Verlag

Funktionen

Funktionen
Darstellungen von Funktionen.png
Eine Funktion ist eine eindeutige Zuordnung. Sie lässt sich auf verschiedene Arten darstellen:
  • als Text
  • als Wertetabelle
  • als Funktionsgleichung
  • als Graph


Funktionen
Orientiere dich in der Formelsammlung! (S.5)

Einstiegstest: Lineare Funktionen (hilfsmittelfreier Teil)

1 Bootsverleih: Das Ausleihen eines Bootes kostet 5€ Grundgebühr und 2€ pro Stunde Leihgebühr. Welcher Term passt?

y = 5x + 2
y = 2x + 5
y = 5x + 5
y = 2x + 2

2 4 Gläser Apfelschorle kosten 6 €. Wie viel kosten dann 7 Gläser Apfelschorle?

10€
10,50€
11 €
11,50€

3 Eine zylinderförmige Vase wird gleichmäßig mit Wasser gefüllt. Welcher Graph passt? (Welche Bedeutung haben die Koordinatenachsen?)

Füllgraphen.jpg

A
B
C
D

4 Das Bild zeigt den Graphen einer linearen Funktion f(x) = mx + b. Welche Aussage ist richtig?

Gerade m negativ, b positiv.png

m > 0 und b > 0
m < 0 und b > 0
m < 0 und b < 0
m > 0 und b < 0

5 Für eine lineare Funktion f(x) = mx + b mit m > 0 und b < 0 gilt...

Die Gerade fällt.
Die Gerade steigt.
Die Gerade schneidet die y-Achse im negativen Bereich.
Die Gerade schneidet die y-Achse im positiven Bereich.

6 Welche Gleichung passt zum Geraden?

F(x) = 2x+3.png

f(x) = 2x + 3
f(x) = 3x + 2
f(x) = + 3
f(x) = + 2

7 Wie lautet die Gleichung der proportionalen Funktion g(x), die parallel zu f(x) = -2x + 3 verläuft?

g(x) = 2x + 3
g(x) = 2x - 3
g(x) = -2x
g(x) = -2x -3

8 Eine Gerade hat die Steigung 2 und geht durch den Punkt P(-1|3). Wie lautet die Gleichung der Geraden? Berechne im Heft.

y = -1x + 3
y = 3x - 1
y = 2x + 3
y = 2x + 5

9 Eine Gerade geht durch die Punkte P(0|1) und Q(4|3). Wie lautet die Gleichung der Geraden? Berechne im Heft.

y = x + 1
y = 4x + 3
y = 1x
y = 1x + 3

10 Liegt der Punkt P(2|-8) auf der Geraden mit der Gleichung f(x) = -5x + 2? Prüfe durch eine Rechnung.

Ja
Nein

11 Bestimme die Nullstelle der Funktion f(x) = -2x + 5. Berechne im Heft.

x = 5
x = 2
x = 2,5
x = -2,5

12 Kreuze die richtigen Aussagen an. Die Gerade mit der Gleichung f(x) = -3x + 6...

hat keine Nullstelle
schneidet die x-Achse bei x = 2
hat die Steigung 6
enthält den Punkt (-1|9)


Auswertung des Eingangstests

Schau, welche Aufgaben du schon gut lösen konntest und bei welchen du noch Schwierigkeiten hattest. Übe dann passend.

  • Lineare Funktionen erkennen 1-4
  • Gleichung - Graph Nr. 5-7
  • Gleichung rechnerisch bestimmen Nr. 8,9
  • Punktprobe Nr. 10
  • Nullstellen Nr. 11


Übung

Löse die Aufgaben aus dem Buch, vergleiche deine Lösungen. Nutze zur Wiederholung die Zusammenfassungen in diesem Lernpfad.

  • Lineare Funktionen erkennen: S. 150, Nr. 1,2
  • Lineare Funktionen zeichnen: S. 150, Nr. 3,4
  • Gleichung - Graph: S. 150, Nr. 5,6 und S. 122, P2 - 4
  • Schnittpunkte mit den Koordinatenachsen: S. 122, P5 - 6
  • Punktprobe: S. 122(123, P7 - P10)


Lineare Funktionen erkennen

Merksätze
Lineare Funktionen erkennen

Eine Funktion, deren Funktionsgleichung die Form f(x) = mx + b hat, heißt lineare Funktion. Der Graph einer linearen Funktion ist immer eine Gerade mit der Steigung m und dem y-Achsenabschnitt b. Der Graph schneidet die y-Achse im Punkt P(0Ib).

Lineare Funktionen erkennen:

Lineare Funktionen erkennen Zusammenfassung.png

Video
Übungen
Übung: Lineare Funktionen erkennen
Entscheide in den folgenden Apps, ob die Funktion linear ist oder nicht. In der letzten App gib die Funktionsgleichung an oder lies m und b ab.


Lineare Funktionen: Wertetabelle

Merksätze
Wertetabelle erstellen

Berechne den y-Wert der Funktion, indem du den x-Wert in die Funktionsgleichung einsetzt.
Beispiel Bootsverleih: y = 2x + 5
Für x = 1 gilt: y = 2 · 1 + 5
                         = 7
Für x = 2 gilt: y = 2 · 2 + 5
                         = 9
Übertrage die Werte in die Wertetabelle:

x 0 1 2 3 4 ...
y 5 7 9 11 13 ...
Video
Übung

Lineare Funktionen: Gleichung und Graph

Merksätze
Funktionsgraphen zeichnen

Trage die Punkte der Wertetabelle in ein Koordinatenkreuz ein und zeichne den Graphen der Funktion.
Erinnerung:"Zuerst nach rechts und dann nach oben, dann werde ich dich loben" bzw. "Zuerst Anlauf nehmen, dann hoch springen."
F(x)=2x+5 mit Punkten.png

Lineare Funktionen: Funktionsgleichung zu einer Geraden aufstellen
  • Lies den y-Achsenabschnitt b ab.
  • Zeichne das Steigungsdreieck und bestimme damit die Steiung m.
Übung




Merksätze Funktionsgleichungen vom Graphen ablesen

Beispiel 1 (leicht): m ist eine natürliche Zahl
Funktionsgleichung einer Geraden bestimmen m=2.png
Beispiel 2 (mittel): m ist eine negative ganze Zahl
Funktionsgleichung einer Geraden bestimmen m=-1,5.png
Beispiel 3 (schwer): m ist ein Bruch
Funktionsgleichung einer Geraden bestimmen m=drei Fünftel.png

Video
Übung
Übung: Bestimmen der Funktionsgleichung einer Geraden
Ordne den Geraden die Funktionsgleichung zu. Wähle eine passende Schwierigkeit aus.

leicht (*)

mittel (**)

schwer (***)

Merksätze
Lineare Funktionen: Graph zeichnen
  • Zeichne den y-Achsenabschnitt b ein. P(0|b)
  • Zeichne das Steigungsdreieck. Starte im Punkt P. Der Nenner gibt an, wie viele Einheiten du nach rechts gehst, der Zähler, wie viele Einheiten nach oben (unten).
  • Schritt: Zeichne die Gerade durch die so erhaltenen Punkte.

Die Bilder zeigen das Vorgehen für die Funktionsgleichung f(x) = x - 1.
Schritt 1Gerade zur Gleichung zeichnen Schritt 1.png
Schritt 2Gerade zur Gleichung zeichnen 2. Schritt.png
Schritt 3Gerade zur Gleichung zeichnen Schritt 3.png

Video
Übung Übung realmath


Lineare Funktionen: Funktionsgleichung rechnerisch bestimmen

Merksätze
Lineare Funktionen: Funktionsgleichung aufstellen mithilfe der Steigung und gegebener Punkte

Du kannst die Funktionsgleichung einer linearen Funktion auch rechnerisch bestimmen:

  • Punkt-Steigungsform: die Steigung m und ein Punkt ist gegeben
  • Zwei-Punkte-Form: zwei Punkte sind gegeben (hier findest du Informationen in der Formelsammlung)

Beispiel 1: Punkt-Steigungsform
geg: m = -1 und P(2|3)
ges: Funktionsgleichung der linearen Funktion
Idee: Setze m und die Koordinaten des Punktes in die Gleichung y = mx + b ein und bestimme so b.
f(x) = mx + b   |m=-1 und P(2|3) einsetzen
3 = -1·2 + b   |vereinfachen
3 = -2 + b   |+2
5 = b
Also lautet die Funktionsgleichung f(x) = -1x + 5.

Beispiel 2: Zwei-Punkte-Form
geg: P(1|5) und Q(3|1)
ges: Funktionsgleichung der linearen Funktion
Bestimme die Steiung m: m = = = = -2
Bestimme b durch Einsetzen von m und einem der Punkte P oder Q in die Gleichung y = mx + b.
f(x) = mx + b   |m=-2 und P(1|5) einsetzen
5 = -2·1 + b   |vereinfachen
5 = -2 + b   |+2
7 = b
Also lautet die Funktionsgleichung f(x) = -2x + 7.

Video
Übung

Lineare Funktionen: Punktprobe

Merksätze
Punktprobe
Wir können rechnerisch prüfen, ob ein Punkt auf dem Graphen der Funktion liegt. Dazu setzen wir die Koordinaten des Punktes P(xIy) in die Funktionsgleichung f(x) = mx + b ein. Der Punkt liegt auf dem Graphen, wenn sich eine wahre Aussage ergibt, die Gleichung also erfüllt ist.
Übung


Lineare Funktionen: Nullstellen bestimmen

Merksätze
Schnittpunkte mit den Koordinatenachsen

Für den Schnittpunkt Py mit der y-Achse (y-Achsenabschnitt) setzen wir x = 0 in die Funktionsgleichung ein berechnen b.
Py (0|b)
Für den Schnittpunkt N mit der x-Achse (Nullstelle) setzen wir f(x) = 0 (oder y = 0) in die Funktionsgleichung ein und lösen die Gleichung nach x auf.

N (xNI0)

Übersicht Schnittpunkte mit den Koordinatenachsen

Übung


Übung

Löse die Aufgaben aus dem Buch. Vergleiche deine Lösungen mit denen hinten im Buch.

  • S. 122, P2 - P9
  • S. 150, Nr. 3-6