{{Box|1=Eigenschaften umgekehrt proportionaler Zuordnungen (antiproportional)|2=Eine umgekehrt proportionale Zuordnung liegt vor, wenn zum '''Doppelten''' (Dreifachen,…) der Eingabegröße die '''Hälfte''' (Drittel...) der Ausgabegröße gehört.
|-
!Merksätze
|{{Box|1=Eigenschaften umgekehrt proportionaler Zuordnungen (antiproportional)|2=Eine umgekehrt proportionale Zuordnung liegt vor, wenn zum '''Doppelten''' (Dreifachen,…) der Eingabegröße die '''Hälfte''' (Drittel...) der Ausgabegröße gehört.
Für jedes Wertepaar in der '''Wertetabelle''' gilt '''Produktgleichheit''':<br>
Für jedes Wertepaar in der '''Wertetabelle''' gilt '''Produktgleichheit''':<br>
Zeile 181:
Zeile 183:
Die '''Rechenvorschrift''' lautet Zeit = 30 : Anzahl der Helfer, also y = 30 : x|3=Merksatz}}
Die '''Rechenvorschrift''' lautet Zeit = 30 : Anzahl der Helfer, also y = 30 : x|3=Merksatz}}
{{Box|Dreisatz bei umgekehrt proportionalen Zuordnungen|Bei einer umgekehrt proportionalen Zuordnung kann die gesuchte Größe mit dem '''Dreisatz''' (3 Schritte) berechnet werden.<br> [[Datei:Dreisatz up schrittweises Vorgehen kurz.png|rahmenlos|663x663px]]
{{Box|Dreisatz bei umgekehrt proportionalen Zuordnungen|Bei einer umgekehrt proportionalen Zuordnung kann die gesuchte Größe mit dem '''Dreisatz''' (3 Schritte) berechnet werden.<br> [[Datei:Dreisatz up schrittweises Vorgehen kurz.png|rahmenlos|663x663px]]
Du hast in Klasse 7 proportionale und umgekehrt proportionale (antiproportionale) Zuordnungen kennengelernt.
Proportionale Zuordnungen und Dreisatz
Merksätze
Eigenschaften proportionaler Zuordnungen
Eine proportionale Zuordnung liegt vor, wenn zum Doppelten (Dreifachen,…) der Eingabegröße das Doppelte (Dreifache…) der Ausgabegröße gehört.
Für jedes Wertepaar in der Wertetabelle gilt Quotientengleichheit: = y : x = 2,3 : 1= 4,6 : 2 = 6,9 : 3 = … = 2,3 (Jedes Weingummi ist gleich schwer und wiegt 2,3 g).
Für das Schaubild gilt: Alle Punkte einer proportionalen Zuordnung liegen auf einer Geraden durch den Ursprung, also durch den Punkt (0I0).
Die Rechenvorschrift lautet: Gewicht = 2,3·Anzahl der Weingummi.
Dreisatz bei proportionalen Zuordnungen
Bei einer proportionalen Zuordnung kann die gesuchte Größe mit dem Dreisatz (3 Schritte) berechnet werden.
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.