Benutzer:Buss-Haskert/Flächeninhalt und Rauminhalt/Rauminhalt

Aus ZUM Projektwiki

Seite im Aufbau


Für unser Picknick im Schwimmbad packen wir auch ein Getränk (Trinkpäckchen) ein.

Schätzfrage
Juice-g2db3a4596 1280.png
Wie viel Flüssigkeit passt in das Trinkpäckchen? Schätze.

Welche Volumeneinheiten hast du bei der Beantwortung der Frage genutzt? Welche Volumeneinheiten kennst du?

Einheiten für den Rauminhalt (das Volumen) sind:
Liter (l); Milliliter (ml) oder

m³, dm³, cm³

4 Volumeneinheiten

Um das Volumen des Trinkpäckchens (des Quaders) berechnen zu können, müssen wir also mit Volumeneinheiten umgehen können.

Als Volumeneinheiten verwenden wir Würfel mit der Kantenlänge 1 m oder 1 cm oder ...
Hier einige Beispiele für deine Vorstellung:

Pin EXP 060.JPG
1 Stecknadelkopf hat ungefähr den Rauminhalt 1 mm³
Würfelzucker -- 2018 -- 3582.jpg
1 Zuckerwürfel hat ungefähr den Rauminhalt 1cm³
Milk-g77777683e 1280.png

1 Milchkarton hat den Rauminhalt 1 dm³ (= 1 Liter)


Volumeneinheiten

Der Rauminhalt eines Körpers (auch Volumen genannt) gibt die Größe des Körpers an. Um den Rauminhalt vergleichen zu können, geben wir ihn in Würfeln als Volumeneinheit an.

Ein Würfel mit der Kantenlänge 1cm hat das Volumen von 1cm³ (gesprochen 1 Kubikzentimeter).

Erinnerung: engl. 'cube' heißt 'Würfel'.


Volumeneinheiten umrechnen
1cm³ und 1dm³.jpg
Wie viele cm³ Würfel passen in 1 dm³?
Schätze. Schau dir anschließend die Bilderfolge an und erkläre!

Volumen 1dm³ sind 1000 cm³ Herleitung.png


Einheit Liter

Bei Flüssigkeiten verwenden wir für das Volumen auch die Einheit Liter.
1 Liter (l) = 1dm³;

1 Milliliter (ml) = 1cm³

1dm³ ist 1 Liter (Milch).png

Volumeneinheiten

Übertrage die Einheitentreppe für die Volumeneinheiten in dein Heft.

Volumentreppe Bild.png


Übung 1: Volumeneinheiten zuordnen
Ordne in den Körpern die passenden Rauminhalte zu.



Übung 2: Volumeneinheiten umwandeln

Wie viele Kubikzenitmeter sind 2 Kubikdezimeter?
2 dm³ = 2 · 1000 cm³ = 2000 cm³
Wie viele Kubikmeter sind 54 000 000 Kubikzentimeter?

54 000 000 cm³ = 54 000 dm³ = 54 m³




Übung 3

Löse die Aufgaben aus dem Buch. Schreibe die Aufgabe ab und gib in der geforderten Einheit an.

  • S. 90 Nr. 3
  • S. 90 Nr. 6
  • S. 90 Nr. 7


Volumenangaben in Kommaschreibweise

Ist das Volumen in Kommaschreibweise gegeben, hilft dir die Stellenwerttafel bei der Umwandlung.
Volumeneinheitentabelle mit Beispielen.png

Übertrage die Beispiele in dein Heft.


Übung 4: Volumeneinheiten in der Kommaschreibweise
Bearbeite die nachfolgenden LearningApps. Gib das Volumen in drei Schreibweisen an. Tipp: Denke an die Einheitentabelle




Übung 5

Löse die Aufgaben aus dem Buch. Die Einheitentabelle kann dir helfen. Volumeneinheitentabelle.png

  • S. 90 Nr. 8
  • S. 91 Nr. 9
  • S. 91 Nr. 11


Vermischte Übungen
Die nachfolgenden Apps und Applets bieten dir weitere Übungsmöglichkeiten.
GeoGebra

Applet von S. Ripp

GeoGebra

Applet von S. Ripp
realmath Level 1
realmath Level 2
realmath Level 3a
realmath Level 3b
realmath Level 4