Herta-Lebenstein-Realschule/Lernpfad Brüche/Erweitern und Kürzen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
(Grammatik korrigiert) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 26: | Zeile 26: | ||
<br><br> | <br><br> | ||
Beim <span style = "color:orange">'''Kürzen'''</span> eines Bruches werden Zähler und Nenner durch | Beim <span style = "color:orange">'''Kürzen'''</span> eines Bruches werden Zähler und Nenner durch dieselbe Zahl dividiert. Die Einteilung wird gröber.<br> | ||
<big> <math>\frac{15}{20} </math> = <math>\frac{15:5}{20:5} </math> = <math>\frac{3}{4}</math> </big><br> | <big> <math>\frac{15}{20} </math> = <math>\frac{15:5}{20:5} </math> = <math>\frac{3}{4}</math> </big><br> |
Version vom 24. Januar 2024, 17:51 Uhr
1 Brüche und gemischte Zahlen
2 Brüche am Zahlenstrahl
3 Brüche erweitern und kürzen
4 Brüche vergleichen und ordnen
3 Verschiedene Brüche mit gleichem Wert - Brüche erweitern und kürzen
Vollständiges Kürzen
Du kannst Brüche oft mehrmals kürzen. Der Bruch ist vollständig gekürzt, wenn Zähler und Nenner keine gemeinsamen Teiler mehr haben.
Zuerst wurde der Bruch mit 4 gekürzt, dann mit 3 und letztlich nochmal mit 2. Um sofort mit dem größten gemeinsam Teiler zu kürzen, kannst Du auch die Teilermengen notieren (siehe grüner Kasten auf der Buchseite 44).
T48=1;2;3;4;6;8;12;16;24;48
T72=1;2;3;4;6;8;9;12;18;24;36;72.
Der größte gemeinsame Teiler von 48 und 72 ist also 24, ggt(48,72) = 24.
Du kannst also direkt mit 24 kürzen.
Brüche lassen sich häufig mehrmals .
= = . Wie Du siehst gehören die Kürzungszahlen 3 und 5 zur Teilermenge des Zählers und Nenners. Stellst Du nun die auf, kannst Du sofort den .
T15 = {1; 3; 5; }
T45 = {1; 3; 5; ; 45}
Also ist der als ggT (größter gemeinsamer Teiler) zu bezeichnen. Folglich kannst Du auch sofort mit 15 kürzen:
=
Der Bruch ist sofort
15kürzen15Teilermengevollständig gekürzt15größten gemeinsamen Teiler finden