Benutzer:Buss-Haskert/Flächeninhalt und Rauminhalt/Rauminhalt von Quader und Würfel: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 78: Zeile 78:
60 : 15 = c<br>
60 : 15 = c<br>
4 (cm) = c<br><br>
4 (cm) = c<br><br>
* S. 93 Nr. 6 c, d.
* S. 93 Nr. 6 b, c, d
* S. 95 Nr. 15 |3=Üben}}
* S. 95 Nr. 15 |3=Üben}}
[[Datei:Lifesaver-34525 1280.png|rahmenlos|center|70x70px]]
[[Datei:Lifesaver-34525 1280.png|rahmenlos|center|70x70px]]
Zeile 84: Zeile 84:
Originallink: https://www.geogebra.org/m/ytgp88hk<br>
Originallink: https://www.geogebra.org/m/ytgp88hk<br>
<ggb_applet id="ytgp88hk" width="1516" height="786" border="888888" />|2=Tipp zu Nr. 6 und 15|3=Verbergen}}
<ggb_applet id="ytgp88hk" width="1516" height="786" border="888888" />|2=Tipp zu Nr. 6 und 15|3=Verbergen}}





Version vom 5. April 2023, 05:40 Uhr

Seite im Aufbau


5 Rauminhalt (Volumen) von Quader und Würfel

Für unser Picknick im Schwimmbad packen wir auch ein Getränk (Trinkpäckchen) ein.

Schätzfrage
Juice-g2db3a4596 1280.png
Wie viel Flüssigkeit passt in das Trinkpäckchen?

Wie viele Kubikzentimeterwürfel passen hinein?

Schätze.

Um deine Schätzung zu prüfen, lege das Päckchen mit kleinen Kubikzentimeterwürfeln aus:
Trinkpäckchen 1.jpg
Trinkpäckchen 2.jpg Es passen 6 Würfel in eine Reihe.
Trinkpäckchen 3.jpg Es passen 4 Reihen in den Boden.
Trinkpäckchen 4.jpg Es passen ca. 8 Schichten übereinander.


Nutze das nachfolgende GeoGebra-Applet, um herauszufinden, wie du mit diesen Angaben das Volumen des Trinkpäckchens berechnen kannst:

GeoGebra

Applet von Matthias Hornof Originallink: https://www.geogebra.org/m/EcHrrMaC


Rauminhalt (Volumen) eines Quaders
Volumen Quader Würfel eingezeichnet.png
Den Rauminhalt (das Volumen) berechnen wir mit der Formel:  

V = Länge ∙ Breite ∙ Höhe
    =  a ∙ b ∙ c

Beim Würfel rechnen wir also:
V = Länge ∙ Breite ∙ Höhe
    =  a ∙ a ∙ a
    = a³

Das Volumen des Trinkpäckchens beträgt also
V = a ∙ b ∙ c
    =  6 ∙ 4 ∙ 8

    = 192 (cm³)

Da die Höhe des Trinkpäckchens etwas höher als 8 cm ist (nämlich 8,5cm), beträgt das tatsächliche Volumen 204 cm³, also ist die Inhaltsangabe von 200 ml richtig.


Übung 1

Löse auf der Seite realmath so viele Aufgaben, bis du mindestens 300 Punkte gesammelt hast.
Tipp: Du kannst durch Ziehen an den Punkten den Quader mit Kubikzentimeterwürfeln ausfüllen.



Übung 2

Löse die Aufgaben aus dem Buch. Achte auf eine übersichtliche Darstellung. Schreibe die Kantenlängen des Quaders auf. Notiere die Formel, setze die Werte ein und berechne. Denke an die passende Einheit.

  • S. 93 Nr. 5
  • S. 93 Nr. 4
Lifesaver-34525 1280.png

Stelle die Schieberegler passend zur Aufgabe ein und kontrolliere deine Rechnung.
Originallink: https://www.geogebra.org/m/ytgp88hk

GeoGebra


Übung 3 Nachdenkaufgabe

Wie ändert sich das Volumen eines Würfels, wenn man die Kantenlängen verdoppelt?

Stelle eine Vermutung auf und überprüfe sie an einem Beispiel bzw. nutze das Applet unten.
GeoGebra



Übung 4 Kantenlänge eines Quaders berechnen

Du kannst bei gegebenem Volumen auch eine fehlende Kantenlänge berechnen. Nutze dazu die Umkehraufgabe.
geg: V = 60 cm³; a = 5 cm; b = 3 cm
ges: c
V = a ∙ b ∙ c   |Werte einsetzen
60 = 5 ∙ 3 ∙ c
60 = 15 ∙ c   |:15 Umkehraufgabe 60 : 15 = c
60 : 15 = c
4 (cm) = c

  • S. 93 Nr. 6 b, c, d
  • S. 95 Nr. 15
Lifesaver-34525 1280.png

Stelle die Schieberegler passend zur Aufgabe ein und kontrolliere deine Rechnung.
Originallink: https://www.geogebra.org/m/ytgp88hk

GeoGebra


Anwendungsaufgaben

Um Anwendungsaufgaben lösen zu können, musst du die Begriffe "Oberfläche und Volumen" verstanden haben.
Prüfe dein Wissen, indem du den Situationen den passenden Begriff zuordnest.


Übung 5 Anwendungsaufgaben

Löse die Aufgaben aus dem Buch. Notiere zunächst, welche Größen gegeben und welche gesucht sind. Eine Skizze hilft dir.

  • S. 95 Nr. 17
  • S. 95 Nr. 18
  • S. 93 Nr. 3
  • S. 93 Nr. 7


Vermischte Übungen - online
Bearbeite die Aufgaben auf der Seite Aufgabenfuchs zur Berechnung des Volumens und der Oberfläche von Quader und Würfel.