Benutzer:Buss-Haskert/Kreis und Zylinder/Kreisteile: Unterschied zwischen den Versionen
K (Aufgabe ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 144: | Zeile 144: | ||
{{Box|Übung 9 - Profiaufgaben|[[Datei:Scheibenwischeraufgabe.png|rechts|rahmenlos]]* Scheibenwischer<br> | {{Box|Übung 9 - Profiaufgaben|[[Datei:Scheibenwischeraufgabe.png|rechts|rahmenlos]]* Scheibenwischer<br> | ||
Der Scheibenwischer eines Autos hat eine Länge von 48cm. Vom Drehpunkt bis zum unteren Ende des Wischerblattes sind es 16cm. Der Scheibenwischer schenkt über einen Winkel von 150° hin und her. Berechne den FLächeninhalt der erfassten Fläche. | Der Scheibenwischer eines Autos hat eine Länge von 48cm. Vom Drehpunkt bis zum unteren Ende des Wischerblattes sind es 16cm. Der Scheibenwischer schenkt über einen Winkel von 150° hin und her. Berechne den FLächeninhalt der erfassten Fläche. | ||
[[Datei:Wendeltreppe Stufe.png|rechts|rahmenlos| | <br> | ||
<br> | |||
[[Datei:Wendeltreppe Stufe.png|rechts|rahmenlos|300x300px]]* Wendeltreppe | |||
Eine Wendeltreppe besteht aus 12 Stufen, die zusammen eine vollständige Drehung ergeben. Die Stufen einer Wendeltreppe haben die im Bild angegebenen Maße. Bestimme den Flächeninhalt einer Treppenstufe.|Üben}} | Eine Wendeltreppe besteht aus 12 Stufen, die zusammen eine vollständige Drehung ergeben. Die Stufen einer Wendeltreppe haben die im Bild angegebenen Maße. Bestimme den Flächeninhalt einer Treppenstufe.|Üben}} | ||
{{Lösung versteckt|1=Der Mittelpunktswinkel α beträgt 360°:12 = 30°, da 12 Stufen genau 360° ergeben.|2=Tipp 1 zu Aufgabe Wendletreppe|3=Verbergen}} | {{Lösung versteckt|1=Der Mittelpunktswinkel α beträgt 360°:12 = 30°, da 12 Stufen genau 360° ergeben.|2=Tipp 1 zu Aufgabe Wendletreppe|3=Verbergen}} |
Version vom 10. April 2021, 11:40 Uhr
SEITE IM AUFBAU!!
3 Kreisteile
Welche Arten von Kreisteilen gibt es?
Mache dich mit den verschiedenen Begriffen vertraut:
Applet von GeoGebra Translation Team German, Pöchtrager
3.1 Kreisring
Für die Fläche des weißen Ringes, berechne zunächst den Flächeninhalt der gesamte Scheibe A1 mit dem Radius raußen = 40cm. Subtrahiere anschließend den Flächeninhalt des inneren Kreises A2 mit dem Radius rinnen = 32cm.
AKreisring weiß = A1 - A2
= π·ra² - π·ri²
= π·40² - π·32²
= π·(40² - 32²)
Den Flächeninhalt des schwarzen, blauen und roten Ringes berechne ebenso. Wähle jeweils der Radius des äußeren und inneren Kreises passend:
schwarzer Ring: ra = 32cm; ri = 24cm.
blauer Ring: rra = 24cm; ri = 16cm.
roter Ring: ra = 18cm; ri = 8cm.
Vergleiche deine Lösung zu a)
Aweiß = 1809,56 cm²
Aschwarz = 1407,43 cm²
Ablau = 1005,31 cm²
Arot = 603,19 cm²
Agelb = 201,06 cm²
Für die Berechnungen der Flächeninhalte der Kreisringe hast du immer vom äußeren Kreis den inneren Kreis subtrahiert. Leite so die Formel her:
AKreisring = Aaußen - Ainnen
= π·r²a - π·r²i | π als gleichen Faktor ausklammern
Die Formel wird veranschaulicht im nachfolgenden Applet:
3.2 Kreisausschnitt AS und Kreisbogen b
Beobachte den Zusammenhang zwischen der Fläche des Kreisausschnittes und dem Mittelpunktswinkel α im nachfolgenden Applet:
Applet von IT Wombat
Beispiele:
geg: r = 5cm; α = 72°
Berechne den Flächeninhalt des Kreisausschnittes AS:
AS = π·r²· |Werte einsetzen
= π·5²·
b = 2·π·r· |Werte einsetzen
= 2·π·5·
Prüfe deine Lösungen mithilfe des Applets:
Formeln umstellen
Anwendungsaufgaben