Benutzer:Buss-Haskert/Prismen/Schrägbild: Unterschied zwischen den Versionen
(GeoGebra Applet ergänzt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 25: | Zeile 25: | ||
{{Lösung versteckt|1=Verbinde zum Schluss die Eckpunkte und beschrifte die Kanten.<br> | {{Lösung versteckt|1=Verbinde zum Schluss die Eckpunkte und beschrifte die Kanten.<br> | ||
[[Datei:Schrägbild Dreiecksprisma Bild 3.png|rahmenlos|400x400px]]|2=Tipp 3|3=Verbergen}} | [[Datei:Schrägbild Dreiecksprisma Bild 3.png|rahmenlos|400x400px]]|2=Tipp 3|3=Verbergen}} | ||
{{Box|1=Übung 1|2=[[Datei:Trapezprisma Grundfläche Bild 8.png|rahmenlos|rechts]]Zeichne das Schräbild eines Vierecksprismas mit einem gleichschenklige Trapez als Grundfläche und der Körperhöhe h<sub>K</sub> = 11,6cm.<br> | {{Box|1=Übung 1|2=[[Datei:Trapezprisma Grundfläche Bild 8.png|rahmenlos|rechts]]Zeichne das Schräbild eines Vierecksprismas mit einem gleichschenklige Trapez als Grundfläche und der Körperhöhe h<sub>K</sub> = 11,6cm.<br> |
Version vom 4. April 2021, 14:09 Uhr
SEITE IM AUFBAU
1 Prismen erkennen
2 Schrägbild eines Prismas
3 Netz und Oberfläche
4 Volumen
5 Projekt: Verpackungen gestalten
2 Schrägbild eines Prismas
1. Schritt: Zeichne die Grundfläche des Prismas in Originalgröße:
Dreieck ABC mit a = b = c = 3cm.
Erinnerung: Konstruiere das Dreieck mit dem Kongruenzsatz SSS.
Zeichne zunächst die Strecke c = 3cm mit den Endpunkten A und B. Zeichne dann um A und B einen Kreis mit dem Radius r = a = b = 3cm. Die Kreisbögen schneiden sich im Punkt C. Verbinde A und B mit C.
Zeichne nun die nach hinten verlaufenden Kanten in den Eckpunkten der Grundseite mit einem Winkel von 45° schräg nach hinten.
Dabei werden die Kanten nur in halber Länge gezeichnet.
Zeichne nicht sichtbare Kanten gestrichelt.
- Zeichne die Grundfläche in Originalgröße.
- Die nach hinten verlaufenden Kanten werden in einem Winkel von 45° und in halber Länge gezeichnet.
Alle nicht sichtbaren Kanten werden gestrichelt gezeichnet.
- Die Eckpunkte werden verbunden und die Kanten beschriftet.
Prüfe deine Schrägbilder aus Nr. 1 mithilfe des GeoGebra-Applets. Für die drei Lagen vertausche je a und b, a und c oder b und c.
Prüfe hier deine Schrägbilder aus Nr. 3 a, b
Prüfe hier deine Schrägbilder aus Nr. 3 c, d, e, f, h
Prüfe hier dein Schrägbild aus Nr. 3i
Prüfe hier dein Schrägbild aus Nr. 4 und Nr. 5a