|
|
Zeile 33: |
Zeile 33: |
|
| |
|
| ===Verhalten im Unendlichen und nahe Null=== | | ===Verhalten im Unendlichen und nahe Null=== |
|
| |
| {{Box| Merke |
| |
| Das '''Verhalten einer Funktion <math>f</math> im Unendlichen''' beschreibt, wie sich der Funktionswert <math>f(x)</math> verhält, wenn <math>x</math> gegen <math>\pm\infty</math> geht, also für sehr große positive und negative Werte von <math>x</math>. Bei ganzrationalen Funktionen der Form <math>f(x)=a_n x^n+a_{n-1}x^{n-1}+\ldots+a_1 x+a_0</math> kann man das Verhalten im Unendlichen untersuchen, indem man sich den Summanden des Funktionsterms mit dem größten Exponenten von <math>x</math> anschaut. Betrachte also <math>g(x)=a_n x^n</math>. Im Unendlichen verhalten sich <math>f</math> und <math>g</math> gleich, du musst also nur das Verhalten im Unendlichen von <math>g</math> untersuchen. Es gibt vier Fälle, die du dabei unterscheiden musst:
| |
| | Merksatz}}
| |
|
| |
| {| class="wikitable center"
| |
| !<math>n</math> gerade
| |
| !<math>n</math> ungerade
| |
| |-
| |
| |<math>n</math> gerade und <math>a_n>0</math>:
| |
|
| |
| <math>f</math> verläuft "von links oben nach rechts oben",
| |
|
| |
| <math>f(x)\rightarrow \infty</math> für <math>x\rightarrow\pm\infty</math>
| |
| |<math>n</math> ungerade und <math>a_n>0</math>:
| |
|
| |
| <math>f</math> verläuft "von links unten nach rechts oben",
| |
|
| |
| <math>f(x)\rightarrow -\infty</math> für <math>x\rightarrow -\infty</math>,
| |
| <math>f(x)\rightarrow \infty</math> für <math>x\rightarrow\infty</math>
| |
| |-
| |
| |<math>n</math> gerade und <math>a_n<0</math>:
| |
|
| |
| <math>f</math> verläuft "von links unten nach rechts unten",
| |
|
| |
| <math>f(x)\rightarrow -\infty</math> für <math>x\rightarrow\pm\infty</math>
| |
| |<math>n</math> ungerade und <math>a_n<0</math>:
| |
|
| |
| <math>f</math> verläuft "von links oben nach rechts unten",
| |
|
| |
| <math>f(x)\rightarrow \infty</math> für <math>x\rightarrow -\infty</math>,
| |
| <math>f(x)\rightarrow -\infty</math> für <math>x\rightarrow\infty</math>
| |
| |}
| |
|
| |
| {{Box| Merke |
| |
| Das '''Verhalten einer Funktion <math>f</math> nahe Null''' beschreibt, wie sich der Funktionswert <math>f(x)</math> verhält, wenn <math>x</math> gegen Null geht, also für sehr kleine Werte von <math>x</math>. Eine ganzrationale Funktion der Form <math>f(x)=a_n x^n+a_{n-1}x^{n-1}+\ldots+a_1 x+a_0</math> verhält sich nahe Null wie die Summe aus dem absoluten Glied <math>a_0</math> und dem Summanden mit der geringsten Potenz von x, die im Funktionsterm auftaucht.
| |
| | Merksatz}}
| |
|
| |
| {{Box| Beispiel 1|
| |
| <math>f(x)=5x^2-3x+4</math> verhält sich im Unendlichen wie <math>g(x)=5x^2</math>. Für <math>x\rightarrow -\infty</math> geht <math>f(x)\rightarrow\infty</math> und für <math>x\rightarrow \infty</math> geht <math>f(x)\rightarrow\infty</math>, da <math>n=2</math> eine gerade Zahl ist und <math>a_n=5>0</math>. Nahe Null verhält sich <math>f</math> wie <math>h(x)=-3x+4</math>. Wenn man sich ein kleines Intervall um <math>x=0</math> anschaut, sieht der Graph von <math>f</math> dort lokal also aus wie eine Gerade mit der Steigung -3 und dem y-Achsenabschnitt 4. Der y-Achsenabschnitt von <math>f</math> ist daher auch 4.
| |
| | Beispiel}}
| |
|
| |
| {{Box| Beispiel 2|
| |
| <math>f(x)=x^5+4x^2-7</math> verhält sich im Unendlichen wie <math>g(x)=x^5</math>. Für <math>x\rightarrow -\infty</math> geht <math>f(x)\rightarrow -\infty</math> und für <math>x\rightarrow \infty</math> geht <math>f(x)\rightarrow\infty</math>, da <math>n=5</math> eine ungerade Zahl ist und <math>a_n=1>0</math> . Nahe Null verhält sich <math>f</math> wie <math>h(x)=4x^2-7</math>, also wie eine um den Faktor 4 gestreckte, nach oben geöffnete Parabel mit dem Scheitelpunkt (und y-Achsenabschnitt) bei <math>(0,-7)</math>.
| |
| | Beispiel}}
| |
|
| |
| {{Box | 1=<span style="color: orange">Aufgabe 1 - Quiz zum Verhalten im Unendlichen</span> |
| |
| 2=Öffne das Quiz im Vollbildmodus und wähle die jeweils richtigen Antworten aus. Es können eine oder mehrere Antworten richtig sein. Es kann helfen, dir Notizen zu machen.
| |
| {{LearningApp|width:80%|height:1000px|app=10633191}}
| |
| | 3=Arbeitsmethode}}
| |
|
| |
| {{Box | 1=<span style="color: blue">Aufgabe 2 - Beschreibe das Verhalten</span> |
| |
| 2=Beschreibe in deinem Heft das Verhalten der nachfolgenden Funktionen und Funktionenscharen im Unendlichen '''und''' nahe Null. Gehe dazu vor wie in den Merkboxen oben.
| |
|
| |
| '''a)''' <math>f(x)=x^2-\frac{4}{3}x^2-3x+9</math>
| |
| {{Lösung versteckt|1=Beachte, dass du manchmal den Funktionsterm erst zusammenfassen musst.|2=Tipp|3=Tipp verbergen}}
| |
| {{Lösung versteckt|1=Zusammengefasst ist <math>f(x)=-\frac{1}{3}x^2-3x+9</math>. <math>f</math> verhält sich daher im Unendlichen wie <math>g(x)=-\frac{1}{3}x^2</math>. Da <math>n=2</math> eine gerade Zahl ist und <math>a_n=-\frac{1}{3}<0</math>, geht <math>f(x)\rightarrow-\infty</math> für <math>x\rightarrow \pm\infty</math>. Der Graph von <math>f</math> verläuft also von links unten nach rechts unten.
| |
| |2=Lösung: Verhalten im Unendlichen|3=Lösung verbergen}}
| |
| {{Lösung versteckt|1=<math>f</math> verhält sich nahe Null wie <math>h(x)=-3x+9</math>, also wie eine fallende Gerade mit Steigung <math>-3</math> und y-Achsenabschnitt <math>9</math>.
| |
| |2=Lösung: Verhalten nahe Null|3=Lösung verbergen}}
| |
|
| |
| '''b)*''' <math>f_a(x)=-7x^5+ax^3</math> mit <math>a>0</math>
| |
| {{Lösung versteckt|1=Gehe bei Funktionenscharen genau so vor wie bei normalen Funktionen.|2=Tipp|3=Tipp verbergen}}
| |
| {{Lösung versteckt|1=<math>f_a</math> verhält sich im Unendlichen wie <math>g(x)=-7x^5</math>. Da <math>n=5</math> eine ungerade Zahl ist und <math>a_n=-7<0</math>, geht <math>f(x)\rightarrow\infty</math> für <math>x\rightarrow -\infty</math> und <math>f(x)\rightarrow-\infty</math> für <math>x\rightarrow \infty</math>. Der Graph von <math>f</math> verläuft also von links oben nach rechts unten.
| |
| |2=Lösung: Verhalten im Unendlichen|3=Lösung verbergen}}
| |
| {{Lösung versteckt|1=<math>f_a</math> verhält sich nahe Null wie <math>h_a(x)=ax^3</math>, also wie eine Funktion dritten Gerades, die von links unten nach rechts oben geht, da <math>a</math> positiv ist. Der y-Achsenabschnitt ist <math>0</math>, da das absolute Glied im Funktionsterm von <math>f</math> nicht auftaucht und daher Null ist.
| |
| |2=Lösung: Verhalten nahe Null|3=Lösung verbergen}}
| |
|
| |
| '''c)*''' <math>f_a(x)=-ax^3+2x^2-\frac{4}{7}</math> mit <math>a<0</math>
| |
| {{Lösung versteckt|1=Überlege dir zunächst, welches Vorzeichen <math>a_n</math> hat, wenn <math>a</math> negativ ist. |2=Tipp|3=Tipp verbergen}}
| |
| {{Lösung versteckt|1=<math>f_a</math> verhält sich im Unendlichen wie <math>g_a(x)=-ax^3</math>. Da <math>n=3</math> eine ungerade Zahl ist und <math>a_n=-a>0</math>, da <math>a<0</math> ist, geht <math>f(x)\rightarrow-\infty</math> für <math>x\rightarrow -\infty</math> und <math>f(x)\rightarrow\infty</math> für <math>x\rightarrow \infty</math>. Der Graph von <math>f</math> verläuft also von links unten nach rechts oben.
| |
| |2=Lösung: Verhalten im Unendlichen|3=Lösung verbergen}}
| |
| {{Lösung versteckt|1=<math>f_a</math> verhält sich nahe Null wie <math>h(x)=2x^2-\frac{4}{7}</math>, also wie eine nach oben geöffnete Parabel mit y-Achsenabschnitt <math>-\frac{4}{7}</math>.
| |
| |2=Lösung: Verhalten nahe Null|3=Lösung verbergen}}
| |
| | 3=Arbeitsmethode}}
| |
|
| |
|
| |
|
| ===Zusammenfassung=== | | ===Zusammenfassung=== |