Herta-Lebenstein-Realschule/Lernpfad Brüche/Brüche: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 78: Zeile 78:
==Gemischte Zahlen==
==Gemischte Zahlen==


{{Box|Aufgabe|Bearbeite im Buch die Einstiegsaufgabe oben auf Seite 39.|Üben}}
{{Box|Einstieg - Mehr als ein Ganzes|Bearbeite im Buch die Einstiegsaufgabe oben auf Seite 39.|Üben}}


{{Lösung versteckt|Es gibt zwei Möglichkeiten den Bruch darzustellen. Einmal als unechten Bruch und einmal als gemischte Zahl|Tipp|Verbergen}}
{{Lösung versteckt|Es gibt zwei Möglichkeiten den Bruch darzustellen. Einmal als unechten Bruch und einmal als gemischte Zahl|Tipp|Verbergen}}
Zeile 93: Zeile 93:
{{#ev:youtube|bGdv8_YDAjc|800|center}}
{{#ev:youtube|bGdv8_YDAjc|800|center}}


{{Box|Aufgabe|Festige dein Wissen, indem du auf den untenstehenden Link klickst und die Aufgaben auf den Seiten 51 - 54 bearbeitest. <br>
{{Box|Übung 4 (im online-Brüche-Buch)|Festige dein Wissen, indem du auf den untenstehenden Link klickst und die Aufgaben auf den Seiten 51 - 54 bearbeitest. <br>
https://www.alice.edu.tum.de/bruchrechnen.html#/10nks|Üben}}
https://www.alice.edu.tum.de/bruchrechnen.html#/10nks|Üben}}




{{Box|Aufgabe|Bearbeite nun die Aufgaben 1 und 2 auf Seite 39.|Üben}}
{{Box|Übung 5 (Buch)|Bearbeite nun die Aufgaben aus dem Buch. Schreibe die Aufgabe ab und wandle um.
* S. 39 Nr. 1
* S. 39 Nr. 2|Üben}}


{{Box|Aufgabe|Lies dir den Lerntipp auf der Seite 39 durch und erkläre ihn deinem Partner. Bearbeite im Anschluss die Aufgaben 3 und 4 auf der Seite. Du darfst rechnen wie im Beispiel oder aber wie Petra im Lerntipp|Üben}}
{{Box|Übung 6 (Partnerarbeit)|Lies dir den Lerntipp auf der Seite 39 durch und erkläre ihn deinem Partner.<br>
Bearbeite im Anschluss die Aufgaben 3 und 4 auf der Seite. Du darfst rechnen wie im Beispiel oder aber wie Petra im Lerntipp|Üben}}


{{Box|Aufgabe|Bearbeite Aufgabe 5 auf Seite 39|Üben}}
{{Box|Übung 7 (Buch)|Bearbeite nun die Aufgaben aus dem Buch. Schreibe die Aufgabe ab und wandle um.
* S. 39 Nr. 5|Üben}}


{{Lösung versteckt|Wandle die gemischte Zahl zuerst in einen unechten Bruch um und ergänze dann die fehlende Zahl. Bei den Aufgaben d-f musst du zudem beachten, dass die Nenner auf beiden Seiten gleich sind.|Tipp zu Nr. 5|Verbergen}}
{{Lösung versteckt|Wandle die gemischte Zahl zuerst in einen unechten Bruch um und ergänze dann die fehlende Zahl. Bei den Aufgaben d-f musst du zudem beachten, dass die Nenner auf beiden Seiten gleich sind.|Tipp zu Nr. 5|Verbergen}}

Version vom 31. Januar 2022, 18:35 Uhr



1 Einführung in das Thema Brüche

Merke: Brüche
Merkkasten Brüche.jpg


Bruch als Division

Ein Bruch ist mit einer Division gleichzusetzen. Z.B.: = 2 : 3
Dabei gibt der Zähler die Anteile der Bruchteile an, in diesem Fall 2.
Der Bruchstrich steht für das Divisionszeichen

Der Nenner gibt an, in wie viele Teile das Ganze unterteilt ist, hier 3.

Bist du noch unsicher, schaue dir das folgende Video an.


Übung 1 - Brüche am Geobrett
Bearbeite die nachfolgenden Übungen am Geobrett. Nimm dazu ein Geobrett aus dem Schrank und spanne die Gummis, wie im Applet vorgegeben.


direkter Link: https://www.geogebra.org/m/tsuyj68c

GeoGebra

Applet von FLINK Team

https://www.geogebra.org/m/ybfytbvu direktert Link

GeoGebra

Applet von FLINK Team GeoGebra - Buch zu Brüchen https://www.geogebra.org/m/pge8d4x3 (FLINK Team)


Übung 2 (Buch)

Löse die Aufgaben aus dem Buch

  • S. 38 Nr. 3
  • S. 38 Nr. 5
  • S. 38 Nr. 6
  • S. 38 Nr. 9
  • S. 38 Nr. 11

>Nr. 3
a)
b)
c)
d)
e)
f)

Nr. 5
a)
b)
c)

Nr. 6
a) zu Fuß
mit der Bahn

b) weiße
blaue

c) Ananassaft:
Apfelsaft:
Orangensaft:

Lösungen zu Nr. 9
Mach dir vor der Zeichnung des Rechtecks Gedanken über die Aufteilung. Der Nenner ist hierfür ausschlaggebend. Die Anzahl an Zentimetern oder Kästchen, die du wählst, sollte durch diese Zahl teilbar sein.


Übung 3 (im online-Brüche-Buch)
Bearbeite im Folgenden die Aufgaben des folgenden Internetlinks https://www.alice.edu.tum.de/bruchrechnen.html#/10nks bis Seite 14 einschließlich.


Gemischte Zahlen

Einstieg - Mehr als ein Ganzes
Bearbeite im Buch die Einstiegsaufgabe oben auf Seite 39.
Es gibt zwei Möglichkeiten den Bruch darzustellen. Einmal als unechten Bruch und einmal als gemischte Zahl


Merke: Unechte Brüche und Gemischte Zahlen
Unechte Brüche & gemischte Zahlen.jpg


Umwandlung
Umwandlung (unechter Bruch, gemischte Zahl).jpg

Schau Dir nun das folgene Video an.


Übung 4 (im online-Brüche-Buch)

Festige dein Wissen, indem du auf den untenstehenden Link klickst und die Aufgaben auf den Seiten 51 - 54 bearbeitest.

https://www.alice.edu.tum.de/bruchrechnen.html#/10nks


Übung 5 (Buch)

Bearbeite nun die Aufgaben aus dem Buch. Schreibe die Aufgabe ab und wandle um.

  • S. 39 Nr. 1
  • S. 39 Nr. 2


Übung 6 (Partnerarbeit)

Lies dir den Lerntipp auf der Seite 39 durch und erkläre ihn deinem Partner.

Bearbeite im Anschluss die Aufgaben 3 und 4 auf der Seite. Du darfst rechnen wie im Beispiel oder aber wie Petra im Lerntipp


Übung 7 (Buch)

Bearbeite nun die Aufgaben aus dem Buch. Schreibe die Aufgabe ab und wandle um.

  • S. 39 Nr. 5
Wandle die gemischte Zahl zuerst in einen unechten Bruch um und ergänze dann die fehlende Zahl. Bei den Aufgaben d-f musst du zudem beachten, dass die Nenner auf beiden Seiten gleich sind.

Überprüfe dein Wissen abschließend mit den folgenden Learningapps.