Herta-Lebenstein-Realschule/Lernpfad Brüche/Brüche: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 23: Zeile 23:
{{#ev:youtube|HsYU-9V53QM|800|center}}
{{#ev:youtube|HsYU-9V53QM|800|center}}


<big>NEU (oder wieder löschen?) Brüche am Geobrett:</big>
{{Box|Übung 1 - Brüche am Geobrett|Bearbeite die nachfolgenden Übungen am Geobrett. Nimm dazu ein Geobrett aus dem Schrank und spanne die Gummis, wie im Applet vorgegeben.|Üben}}
 


Gutes GeoGebra - Buch zu Brüchen
https://www.geogebra.org/m/pge8d4x3
(FLINK Team)


direkter Link: https://www.geogebra.org/m/tsuyj68c
direkter Link: https://www.geogebra.org/m/tsuyj68c
Zeile 36: Zeile 34:
<ggb_applet id="b5eawyh6" width="799" height="710" border="888888" />
<ggb_applet id="b5eawyh6" width="799" height="710" border="888888" />
<small>Applet von FLINK Team</small>
<small>Applet von FLINK Team</small>
GeoGebra - Buch zu Brüchen
https://www.geogebra.org/m/pge8d4x3
(FLINK Team)<br>
{{Box|Übung 2 (Buch)|Löse die Aufgaben aus dem Buch
* S. 38 Nr. 3
* S. 38 Nr. 5
* S. 38 Nr. 6
* S. 38 Nr. 9
* S. 38 Nr. 11|Üben}}


{{Box|Aufgabe|Löse im Buch die Nr.: 3, 5, 6, 9 und 11 auf Seite 38|Üben}}
{{Lösung versteckt|>Nr. 3<br>
{{Lösung versteckt|>Nr. 3<br>
a) <math>\frac{2}{5}</math><br>
a) <math>\frac{2}{5}</math><br>
Zeile 46: Zeile 53:
f) <math>\frac{3}{5}</math><br>
f) <math>\frac{3}{5}</math><br>
|Lösungen zu Nr. 3|Schließen}}
|Lösungen zu Nr. 3|Schließen}}
{{Lösung versteckt|Nr. 5<br>
{{Lösung versteckt|Nr. 5<br>
a) <math>\frac{2}{6}</math><br>
a) <math>\frac{2}{6}</math><br>
Zeile 52: Zeile 58:
c) <math>\frac{8}{15}</math><br>
c) <math>\frac{8}{15}</math><br>
|Lösungen zu Nr. 5|Schließen}}
|Lösungen zu Nr. 5|Schließen}}
{{Lösung versteckt|Nr. 6<br>
{{Lösung versteckt|Nr. 6<br>
a) zu Fuß <math>\frac{11}{28}</math><br> mit der Bahn <math>\frac{17}{28}</math><br>
a) zu Fuß <math>\frac{11}{28}</math><br> mit der Bahn <math>\frac{17}{28}</math><br>
Zeile 61: Zeile 65:
c) Ananassaft: <math>\frac{1}{6}</math><br>Apfelsaft: <math>\frac{2}{6}</math><br>Orangensaft: <math>\frac{3}{6}</math><br>
c) Ananassaft: <math>\frac{1}{6}</math><br>Apfelsaft: <math>\frac{2}{6}</math><br>Orangensaft: <math>\frac{3}{6}</math><br>
|Lösungen zu Nr. 6|Schließen}}
|Lösungen zu Nr. 6|Schließen}}
{{Lösung versteckt|Nr. 9<br>
{{Lösung versteckt|Nr. 9<br>
a) Hier ist kein Fehler, da <math>\frac{2}{6}</math> und <math>\frac{1}{3}</math> den selben Wert haben. <br>
a) Hier ist kein Fehler, da <math>\frac{2}{6}</math> und <math>\frac{1}{3}</math> den selben Wert haben. <br>
b) Hier ist der Nenner falsch. Es müsste dort eine 8 stehen, da es acht einzelne Felder sind.<br>
b) Hier ist der Nenner falsch. Es müsste dort eine 8 stehen, da es acht einzelne Felder sind.<br>
c) <span style="color:red">Zum einen sind Zähler und Nenner vertauscht, allerdings liegt ein weiterer</span> Fehler im linken Feld der Abbildung, dieses ist größer als die anderen (doppelt so groß), daher kann man keinen Bruch angeben.<br>
c) <span style="color:red">Zum einen sind Zähler und Nenner vertauscht, allerdings liegt ein weiterer</span> Fehler im linken Feld der Abbildung, dieses ist größer als die anderen (doppelt so groß), daher kann man keinen Bruch angeben.<br>
|Lösungen zu Nr. 9|Schließen}}
|Lösungen zu Nr. 9|Schließen}}
{{Lösung versteckt|Mach dir vor der Zeichnung des Rechtecks Gedanken über die Aufteilung. Der Nenner ist hierfür ausschlaggebend. Die Anzahl an Zentimetern oder Kästchen, die du wählst, sollte durch diese Zahl teilbar sein.|Tipp zu Nr. 11|Verbergen}}
{{Lösung versteckt|Mach dir vor der Zeichnung des Rechtecks Gedanken über die Aufteilung. Der Nenner ist hierfür ausschlaggebend. Die Anzahl an Zentimetern oder Kästchen, die du wählst, sollte durch diese Zahl teilbar sein.|Tipp zu Nr. 11|Verbergen}}




{{Box|Aufgabe|Bearbeite im Folgenden die Aufgaben des folgenden Internetlinks https://www.alice.edu.tum.de/bruchrechnen.html#/10nks bis Seite 14 einschließlich|Üben}}
{{Box|Übung 3| (im online-Brüche-Buch)|Bearbeite im Folgenden die Aufgaben des folgenden Internetlinks https://www.alice.edu.tum.de/bruchrechnen.html#/10nks bis Seite 14 einschließlich.|Üben}}





Version vom 31. Januar 2022, 17:15 Uhr



1 Einführung in das Thema Brüche

Merke: Brüche
Merkkasten Brüche.jpg


Bruch als Division

Ein Bruch ist mit einer Division gleichzusetzen. Z.B.: = 2 : 3
Dabei gibt der Zähler die Anteile der Bruchteile an, in diesem Fall 2.
Der Bruchstrich steht für das Divisionszeichen

Der Nenner gibt an, in wie viele Teile das Ganze unterteilt ist, hier 3.

Bist du noch unsicher, schaue dir das folgende Video an.


Übung 1 - Brüche am Geobrett
Bearbeite die nachfolgenden Übungen am Geobrett. Nimm dazu ein Geobrett aus dem Schrank und spanne die Gummis, wie im Applet vorgegeben.


direkter Link: https://www.geogebra.org/m/tsuyj68c

GeoGebra

Applet von FLINK Team

https://www.geogebra.org/m/ybfytbvu direktert Link

GeoGebra

Applet von FLINK Team GeoGebra - Buch zu Brüchen https://www.geogebra.org/m/pge8d4x3 (FLINK Team)


Übung 2 (Buch)

Löse die Aufgaben aus dem Buch

  • S. 38 Nr. 3
  • S. 38 Nr. 5
  • S. 38 Nr. 6
  • S. 38 Nr. 9
  • S. 38 Nr. 11

>Nr. 3
a)
b)
c)
d)
e)
f)

Nr. 5
a)
b)
c)

Nr. 6
a) zu Fuß
mit der Bahn

b) weiße
blaue

c) Ananassaft:
Apfelsaft:
Orangensaft:

Lösungen zu Nr. 9
Mach dir vor der Zeichnung des Rechtecks Gedanken über die Aufteilung. Der Nenner ist hierfür ausschlaggebend. Die Anzahl an Zentimetern oder Kästchen, die du wählst, sollte durch diese Zahl teilbar sein.


Übung 3
(im online-Brüche-Buch)


Gemischte Zahlen

Aufgabe
Bearbeite im Buch die Einstiegsaufgabe oben auf Seite 39.
Es gibt zwei Möglichkeiten den Bruch darzustellen. Einmal als unechten Bruch und einmal als gemischte Zahl


Merke: Unechte Brüche und Gemischte Zahlen
Unechte Brüche & gemischte Zahlen.jpg


Umwandlung
Umwandlung (unechter Bruch, gemischte Zahl).jpg

Schau Dir nun das folgene Video an.


Aufgabe

Festige dein Wissen, indem du auf den untenstehenden Link klickst und die Aufgaben auf den Seiten 51 - 54 bearbeitest.

https://www.alice.edu.tum.de/bruchrechnen.html#/10nks


Aufgabe
Bearbeite nun die Aufgaben 1 und 2 auf Seite 39.


Aufgabe
Lies dir den Lerntipp auf der Seite 39 durch und erkläre ihn deinem Partner. Bearbeite im Anschluss die Aufgaben 3 und 4 auf der Seite. Du darfst rechnen wie im Beispiel oder aber wie Petra im Lerntipp


Aufgabe
Bearbeite Aufgabe 5 auf Seite 39
Wandle die gemischte Zahl zuerst in einen unechten Bruch um und ergänze dann die fehlende Zahl. Bei den Aufgaben d-f musst du zudem beachten, dass die Nenner auf beiden Seiten gleich sind.

Überprüfe dein Wissen abschließend mit den folgenden Learningapps.