Herta-Lebenstein-Realschule/Lernpfad Brüche/Ordnen: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
(Unterseite kopiert)
Markierung: 2017-Quelltext-Bearbeitung
 
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(33 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
===='''Brüche am Zahlenstrahl'''====
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]]
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}<br>
{{Navigation|[[Herta-Lebenstein-Realschule/Lernpfad Brüche|0 Vorwissen]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Brüche/Brüche|1 Brüche und gemischte Zahlen]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Brüche/Zahlenstrahl|2 Brüche am Zahlenstrahl]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Brüche/Erweitern und Kürzen|3 Brüche erweitern und kürzen]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Brüche/Ordnen|4 Brüche vergleichen und ordnen]]<br>
[[Herta-Lebenstein-Realschule/Lernpfad Brüche/Prozent|5 Brüche und Prozent]]}}<br>


{{Box|Merke: ''Brüche am Zahlenstrahl''|
[[Datei:Merkkasten Brüche am Zahlenstrahl.jpg|800px]]|Merksatz}}


==4 Brüche ordnen und vergleichen==


Notiere die Überschrift "Brüche am Zahlenstrahl"


{{Box|Aufgabe|Öffne die Seite: https://www.alice.edu.tum.de/bruchrechnen.html#/40 und experimentiere mit den Animationen auf Seite 40.  
{{Box|1=Einstiegsaufgabe - Wer bekommt mehr Schokolade?|2=Du darfst in jedem Bild wählen, welchen Rest der Scholokadentafeln du jeweils wählst. Begründe deine Entscheidung!<br>
Lies dir die Seite 41 durch und schreibe den Merksatz in dein Heft.<br> Übernimm zudem die Skizze.<br>
Beispiel 1 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Beispiel 2 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Beispiel 3<br>
Bearbeite die Aufgaben bis zur Seite 43 einschließlich. Löse nun die Aufgaben 1-3 auf den Seiten 40 und 41 im Buch. |Üben}}
[[Datei:Schokolade Brüche vergleichen.png|rahmenlos|800x800px]]
Notiere die Anteile der Schokolade als Brüche in deinem Heft und notiere die passenden Relationszeichen "<, > oder =".|3=Frage}}
<div class="grid">
<div class="width-1-3">
{{Lösung versteckt|Der erste Anteil beträgt <math>\tfrac{2}{5}</math>, der zweite <math>\tfrac{2}{6}</math>.<br>
<math>\tfrac{2}{5}</math> sind mehr als <math>\tfrac{2}{6}</math>, da das Ganze nur in 5 gleich große Stücke geteilt wird und du davon 2 erhältst. Teilst du das Ganze in 6 gleich große Teile, sind diese Teile natürlich kleiner und wenn du dann 2 davon bekommst, ist dies weniger.|Tipp 1 zu Beispiel 1|Verbergen}}
{{Lösung versteckt|1=Die Brüche <math>\tfrac{2}{5}</math> und <math>\tfrac{2}{6}</math> haben '''gleiche Zähler'''.<br>
Dann ist der Bruch der '''größere''', der den '''kleineren Nenner''' hat, denn hier sind die einzelnen Teile größer.
<math>\tfrac{2}{5}</math> <math>></math> <math>\tfrac{2}{6}</math>|2=Tipp 2 zu Beispiel 1|3=Verbergen}}</div>
<div class="width-1-3">{{Lösung versteckt|Der erste Anteil beträgt <math>\tfrac{3}{6}</math>, der zweite <math>\tfrac{4}{6}</math>.<br>
<math>\tfrac{4}{6}</math> sind mehr als <math>\tfrac{3}{6}</math>, da das Ganze jeweils in 6 gleich große Teile geteilt wird und du davon 4 erhältst anstatt nur 3.|Tipp 1 zu Beispiel 2|Verbergen}}
{{Lösung versteckt|1=Die Brüche <math>\tfrac{4}{6}</math> und <math>\tfrac{3}{6}</math> haben '''gleiche Nenner'''.<br>
Dann ist der Bruch '''größer''', der den '''größeren Zähler''' hat, denn hier erhältst du mehr Teile.<br>
<math>\tfrac{4}{6}</math> <math>></math> <math>\tfrac{3}{6}</math>|2=Tipp 2 zu Beispiel 2|3=Lösung versteckt}}</div>
<div class="width-1-3">{{Lösung versteckt|Brich die Schokoladenreste jeweils in einzelne Stückchen (wie es vorgesehen ist). <br>
[[Datei:Schokolade Brüche vergleichen Beispiel 3 erweitert.png|rahmenlos]]<br>Kannst du nun die Anteile vergleichen?|Tipp 1 zu Beispiel 3|Verbergen}}
{{Lösung versteckt|1=Die Brüche <math>\tfrac{4}{6}</math> und <math>\tfrac{3}{4}</math> haben weder gleiche Zähler noch gleiche Nenner. Das Zerteilen der Riegel in Stücke bedeutet mathematisch, die Brüche zu erweitern (verfeinern).<br>
<math>\tfrac{4}{6}</math> = <math>\tfrac{16}{24}</math> und <math>\tfrac{3}{4}</math>und <math>\tfrac{18}{24}</math><br>
Nun haben beide Brüche denselben Nenner, du kannst vergleichen wie in Beispiel 2.<br>
<math>\tfrac{16}{24}</math><math>></math><math>\tfrac{18}{24}</math>, also <br>
<math>\tfrac{4}{6}</math><math>></math><math>\tfrac{3}{4}</math>|2=Tipp 2 zu Beispiel 3|3=Verbergen}}
</div>
</div>


Wenn Du noch Probleme bei den Aufgaben hast, schau dir das folgende Video an:{{#ev:youtube|wB02hxn8uuQ|800|center}}


{{Box|Aufgabe|Bearbeite die Aufgaben bis zur Seite 47 des oben genannten Links einschließlich.<br>Übernimm den Merksatz auf Seite 47 in dein Heft. Nimm dir nun das Buch und schlage wieder die Seite 41 auf. Löse jetzt die Aufgaben<br> 4a und 4c<br>5c und 5d sowie<br> 6b und 6c|Üben}}
{{Box|1=Erarbeitung 1 (im online-Brüche-Buch)|2=Bearbeite die Aufgaben aus dem online-Brüche-Buch. https://www.alice.edu.tum.de/bruchrechnen.html#/60<br>
* [https://www.alice.edu.tum.de/bruchrechnen.html#/60 Vergleiche Brüche mit gleichem Zähler.] Bearbeite die Aufgaben 80 und 81 und lies den Merksatz auf S. 62.
* [https://www.alice.edu.tum.de/bruchrechnen.html#/63 Vergleiche Brüche mit gleichem Nenner (gleichnamige Brüche)] Bearbeite die Aufgaben die Aufgaben 83 und 84.
|3=Üben}}


{{Lösung versteckt|Überlege dir,wenn wie in Aufgabe a der ganze Zahlenstrahl 10 cm ist, wie groß ist dann ein Zehntel davon usw..|Tipp zu Nr. 4|Verbergen}}


{{Lösung versteckt|Mit dem Erweitern und Kürzen findest du die Lösungen.|Tipp zu Nr. 5|Verbergen}}
{{Box|Merke 1|[[Datei:Brüche vergleichen Tafelbild 1.jpg|rahmenlos|900x900px]]|Merksatz}}
{{Box|Übung 1: Brüche vergleichen|Bearbeite die LearingApps.|Üben}}
{{LearningApp|app=p4ekhj56a19|width=100%|height=300px}}
{{LearningApp|app=p1fswv95k19|width=100%|height=300px}}
{{LearningApp|app=p8po0kh7j19|width=100%|height=300px}}


{{Lösung versteckt|Denke bei Aufgabe 6 daran, einen gemeinsamen Nenner aller Brüche zu finden, damit du eine passende Einteilung findest. Diese kannst du durch Kürzen/Erweitern finden.|Tipp zu Nr. 6|Verbergen}}


{{Box|Aufgabe|Bearbeite abschließend die Aufgaben 9-11 auf Seite 41 (mit deinem Partner).|Üben}}
{{Box|1=Erarbeitung 2 (im online-Brüche-Buch)|2=Bearbeite die Aufgaben aus dem online-Brüche-Buch. https://www.alice.edu.tum.de/bruchrechnen.html#/56<br>
* [https://www.alice.edu.tum.de/bruchrechnen.html#/56 Mehr oder weniger als 1 Ganzes?] Bearbeite Aufgabe 74, 75 und 76.
* [https://www.alice.edu.tum.de/bruchrechnen.html#/58 Mehr oder weniger als die Hälfte?] Bearbeite die Aufgaben 77, 78 und 79
|3=Üben}}
{{Box|Merke 2|[[Datei:Brüche vergleichen Tafelbild 2.jpg|rahmenlos|724x724px]]|Merksatz}}


{{Box|1=Erarbeitung 3 (im online-Brüche-Buch)|2=Bearbeite die Aufgaben aus dem online-Brüche-Buch. https://www.alice.edu.tum.de/bruchrechnen.html#/64<br>
* [https://www.alice.edu.tum.de/bruchrechnen.html#/64 Vergleiche ungleichnamige Brüche.] Bearbeite die Aufgaben 85 bis 90.
|3=Üben}}


===='''Brüche ordnen und vergleichen'''====
{{Box|Merke 3|[[Datei:Brüche vergleichen Tafelbild 3.jpg|rahmenlos|600x600px]]|Merksatz}}
 
{{Box|Übung 2|Bearbeite die LearningApps.|Üben}}
 
{{LearningApp|app=pzx355kwk19|width=100%|height=600px}}
{{Box|Aufgabe| Versuche dich an der Einstiegsaufgabe auf Seite 45. Wahrscheinlich wirst du nicht gleich auf die Lösung kommen. Wenn du Probleme hast, lies dir die untenstehenden Hinweise durch.|Üben}}
{{LearningApp|app=pe4pei2wk19|width=100%|heigth=600px}}
 
 
{{Box|Merke|'''Beim Größenvergleich von Brüchen''' mit gleichem Nenner gehört zum größeren Zähler die größere Bruchzahl.
Bei Brüchen mit verschiedenen Nennern ist es meist notwendig, sie zum Vergleichen zuerst auf gleiche Nenner zu bringen.|Merksatz}}
 
Beispiele: Wir ordnen der Größe nach: <math>\frac{7}{9}</math>; <math>\frac{4}{9}</math>; <math>\frac{13}{9}</math> . <br>
Da die Brüche gleichnamig sind und 4 < 7 < 13 ist, gilt
<math>\frac{4}{9}</math> < <math>\frac{7}{9}</math> < <math>\frac{13}{9}</math>.
 
b) Um <math>\frac{5}{8}</math>  und <math>\frac{3}{9}</math> zu vergleichen, müsen die Brüche durch erweitern gleichnamig gemacht werden. Gleichnamig bedeutet, dass der Nenner bei beiden Brüchen gleich ist.
<math>\frac{5}{8}</math> = <math>\frac{45}{72}</math> und <math>\frac{3}{9}</math> = <math>\frac{24}{72}</math> <br>
Da <math>\frac{24}{72}</math> < <math>\frac{45}{72}</math>, gilt <math>\frac{3}{9}</math> < <math>\frac{5}{8}</math>
 
<br>
<br>
{{LearningApp|app=p3anjsroc19|width=100%|height=600px}}<br>


{{Box|1=Aufgabe|2=Bearbeite auf der Internetseite:https://www.alice.edu.tum.de/bruchrechnen.html#/57 die Aufgaben ab Seite 56 - 63. Notiere den Merksatz in dein Heft. Bearbeite nun die Aufgabe 1a und 1b auf Seite 46 im Buch. Arbeite weiter auf der Internetseite: Seiten 64 - 66. Bearbeite nun die Aufgaben 1c und 9 auf Seite 46 <br>
{{Box|Übung 3|Löse die Aufgaben aus dem Buch. Welche Strategie wählst du für den Größenvergleich. Schreibe deine Idee zur Aufgabe ins Heft.
https://www.alice.edu.tum.de/bruchrechnen.html#/10nks|3=Üben}}
* S. 46 Nr. 1
 
* S. 46 Nr. 2
{{Lösung versteckt|Suche immer den gemeinsamen Nenner und erweitere oben (Zähler) mit derselben Zahl wie unten (Nenner).|Tipp zu Nr. 9|Verbergen}}
* S. 46 Nr. 3
 
* S. 46 Nr. 5|Üben}}
Wenn ihr Probleme bei der Bearbeitung habt, schaut euch nochmal das folgende Video an.
{{Lösung versteckt|Die Brüche in Aufgabenteil a) und b) sind gleichnamig, vergleiche also die Zähler.<br>
 
Im Aufgabenteil c) nutze den Vergleich mit der Hälfte, den Vergleich der Zähler und den Vergleich der Nenner. Alternativ kannst du alle Brüche auf den Nenner 8 erweitern.|Tipp zur Nr. 1}}
{{#ev:youtube|4jMg_j6y6do|800|center}}
 
{{Box|Aufgabe|Bearbeite die Aufgaben 2 und 5 auf der Buchseite 46.|Üben}}
 
{{Lösung versteckt|Denke bei Aufgabe 2a an echte und unechte Brüche. Echte Brüche sind kleiner als 1, unechte größer. Bei 2b musst du schauen, ob der Zähler, weniger als die Hälfte des Nenners hat, dann ist der Bruch kleiner als <math>\frac{1}{2}</math>, ist der Zähler genau die Hälfte des Nenners ist es genau <math>\frac{1}{2}</math> und ist der Zähler größer als die Hälfte des Nenners, ist der Bruch größer als <math>\frac{1}{2}</math>. Bei 2c musst du nur die Brüche finden, deren Zähler größer als die Hälfte des Nenners sind.|Tipp zu Nr. 2|Verbergen}}
{{Lösung versteckt|Denke bei Aufgabe 2a an echte und unechte Brüche. Echte Brüche sind kleiner als 1, unechte größer. Bei 2b musst du schauen, ob der Zähler, weniger als die Hälfte des Nenners hat, dann ist der Bruch kleiner als <math>\frac{1}{2}</math>, ist der Zähler genau die Hälfte des Nenners ist es genau <math>\frac{1}{2}</math> und ist der Zähler größer als die Hälfte des Nenners, ist der Bruch größer als <math>\frac{1}{2}</math>. Bei 2c musst du nur die Brüche finden, deren Zähler größer als die Hälfte des Nenners sind.|Tipp zu Nr. 2|Verbergen}}
{{Lösung versteckt|Suche immer den gemeinsamen Nenner und erweitere oben (Zähler) mit derselben Zahl wie unten (Nenner).|Tipp zu Nr. 5|Verbergen}}
{{Lösung versteckt|Suche immer den gemeinsamen Nenner und erweitere oben (Zähler) mit derselben Zahl wie unten (Nenner).|Tipp zu Nr. 5|Verbergen}}


{{Box|Aufgabe|Bearbeite die Aufgaben 7 und 8 auf Buchseite 46 im Heft.|Üben}}
Wenn du Probleme bei der Bearbeitung hast, schau nochmal das folgende Video an.


===='''Prozent'''====
{{#ev:youtube|4jMg_j6y6do|800|center}}
 
{{Box|Aufgabe|Die Klasse 8a hat insgesamt 28 Schüler. Die Hälfte der Klasse spielt Fußball. 25 % der Klasse sind dem Reitsport verpflichtet und die übrigen betreiben gar keine Sportart.
Wie viele Schüler spielen Fußball und wie viel Prozent sind das?
Wie viele Schüler reiten und wie viel Prozent sind das?
Wie sieht das für die Nichtsportler aus?|Üben}}
 
{{Lösung versteckt| 28 Schüler ergeben einhundert Prozent. Die Hälfte sind 25%. 25 ist die Hälfte von 50%|Tipp|Verbergen}}
 
 
<u>
'''Prozentrechnung im Alltag'''</u>
 
Wir schenken euch die Mehrwertssteuer von 19%.<br>
Alle T-shirts um 20 % reduziert.<br>
50% der Klasse hat eine drei oder besser geschrieben.<br>
Der Pullover besteht zu 40 Prozent aus Seide und 60% aus Baumwolle.
 
 
Ihr seht, dass die Prozentrechnung häufig Verwendung findet. Sicher ist euch der Begriff auch schon begegnet.
<br>
<br>
{{Box|1=Prozent|2=Aber was bedeutet Prozent überhaupt.
Prozent ist aus dem Lateinischen (pro centum) und hat die Bedeutung von Hundert oder Hundertstel.
50% bedeutet also 50 von Hundert:  <math>\frac{50}{100}</math><br>
6% bedeutet also 6 von Hundert:  <math>\frac{6}{100}</math><br>
Möchte ich nun einen Bruch in Prozent umwandelt, mache ich das folgendermaßen:
<math>\frac{24}{25}</math> =  <math>\frac{96}{100}</math> = 96%
Ich habe also den Nenner auf Hundert gebracht und den Zähler ebenfalls mit 4 multipliziert, so dass ich nun die Prozentzahl von 96 im Zähler ablesen kann.
|3=Kurzinfo}}
<br>
<br>
Schau dir das folgende Video zur Verdeutlichung an.
<br>


{{#ev:youtube|SnLAmeu_lbE|800|center}}
{{Box|Übung 4|Löse die Aufgaben aus dem Buch. Welche Strategie wählst du für den Größenvergleich. Schreibe deine Idee zur Aufgabe ins Heft.
<br>
* S. 46 Nr. 7
<br>
* S. 46 Nr. 8
Schreibe nun den Satz in dem gelben Kasten auf Seite 47 ab und den Lerntipp auf Seite 48.<br>
* S. 46 Nr. 9|Üben}}
<br>
{{Lösung versteckt|Vergleiche die Brüche zunächst mit einem Ganzen, danach mit der Hälfte. Lies noch einmal im Merkkasten 2.|Tipp zu Nr. 7|Verbergen}}
{{Lösung versteckt|Schau noch einmal den Merkkasten 1 an. Dann fällt dir die Lösung der Aufgabe leicht.|Tipp zu Nr. 8|Verbergen}}
{{Lösung versteckt|Mache die Brüche gleichnamig. Lies noch einmal Merkkasten 3.<br>
a) Der Hauptnenner ist 24.<br>
b) Der Hauptnenner ist 36.<br>
c) Der Hauptnenner ist 72.<br>
d) Der Hauptnenner ist 144.|Tipp zu Nr. 9|Verbergen}}


Versucht nun die Aufgaben in den Learninapps zu lösen.
{{Fortsetzung|weiter=5 Brüche und Prozent|weiterlink=Herta-Lebenstein-Realschule/Lernpfad Brüche/Prozent}}
<br>
<br>
{{LearningApp|app=pdemok62k21|width=80%|height=200px}}
{{LearningApp|app=p6yzz00vj21|width=80%|height=200px}}
<br>
<br>
{{Box|Aufgabe|Bearbeitet nun die Aufgaben 1 und 2g-l auf Seite 47|Üben}}
<br>
 
{{Lösung versteckt|Bringe den Nenner, falls nötig, immer zuerst auf einhundert und multipliziere den Zähler mit der selben Zahl wie dem Nenner. Nun kannst Du im Zähler die Prozentzahl ablesen. |Tipp zu Nr. 1|Verbergen}}
<br>
 
{{Lösung versteckt|Schreibe die Prozentzahl als Bruch und kürze gegebenenfalls. Beispiel 16% = <math>\frac{16}{100}</math> = <math>\frac{4}{25}</math> |Tipp zu Nr. 2|Verbergen}}
<br>
<br>
{{Box|Aufgabe|Bearbeitet nun die Aufgabe 4a-f und die Aufgabe 5 auf Seite 48.|Üben}}
<br>
<br>
Bearbeitet nun folgende learningapp.{{LearningApp|app=pgmock9tv21|width=80%|height=200px}}
<br>
<br>
{{Box|Aufgabe|Bearbeitet nun die Aufgaben 7 und 10 auf Seite 48|Üben}}
 
<br>
{{Lösung versteckt|Zähle zuerst alle Kästchen (Nenner) und dann die markierten (Zähler) und stelle den Bruch auf. Bringe den Nenner auf hundert und multipliziere den Zähler mit der selben Zahl wie den Nenner. Der Zähler gibt nun die Prozentzahl an.|Tipp zu Nr. 7|Verbergen}}

Aktuelle Version vom 6. Oktober 2024, 11:23 Uhr

Schullogo HLR.jpg




4 Brüche ordnen und vergleichen

Einstiegsaufgabe - Wer bekommt mehr Schokolade?

Du darfst in jedem Bild wählen, welchen Rest der Scholokadentafeln du jeweils wählst. Begründe deine Entscheidung!
Beispiel 1                                                 Beispiel 2                                                 Beispiel 3
Schokolade Brüche vergleichen.png

Notiere die Anteile der Schokolade als Brüche in deinem Heft und notiere die passenden Relationszeichen "<, > oder =".

Der erste Anteil beträgt , der zweite .

sind mehr als , da das Ganze nur in 5 gleich große Stücke geteilt wird und du davon 2 erhältst. Teilst du das Ganze in 6 gleich große Teile, sind diese Teile natürlich kleiner und wenn du dann 2 davon bekommst, ist dies weniger.

Die Brüche und haben gleiche Zähler.
Dann ist der Bruch der größere, der den kleineren Nenner hat, denn hier sind die einzelnen Teile größer.

Der erste Anteil beträgt , der zweite .

sind mehr als , da das Ganze jeweils in 6 gleich große Teile geteilt wird und du davon 4 erhältst anstatt nur 3.

Die Brüche und haben gleiche Nenner.
Dann ist der Bruch größer, der den größeren Zähler hat, denn hier erhältst du mehr Teile.

Brich die Schokoladenreste jeweils in einzelne Stückchen (wie es vorgesehen ist).

Schokolade Brüche vergleichen Beispiel 3 erweitert.png
Kannst du nun die Anteile vergleichen?

Die Brüche und haben weder gleiche Zähler noch gleiche Nenner. Das Zerteilen der Riegel in Stücke bedeutet mathematisch, die Brüche zu erweitern (verfeinern).
= und und
Nun haben beide Brüche denselben Nenner, du kannst vergleichen wie in Beispiel 2.
, also


Erarbeitung 1 (im online-Brüche-Buch)

Bearbeite die Aufgaben aus dem online-Brüche-Buch. https://www.alice.edu.tum.de/bruchrechnen.html#/60


Merke 1
Brüche vergleichen Tafelbild 1.jpg
Übung 1: Brüche vergleichen
Bearbeite die LearingApps.





Erarbeitung 2 (im online-Brüche-Buch)

Bearbeite die Aufgaben aus dem online-Brüche-Buch. https://www.alice.edu.tum.de/bruchrechnen.html#/56

Merke 2
Brüche vergleichen Tafelbild 2.jpg


Erarbeitung 3 (im online-Brüche-Buch)

Bearbeite die Aufgaben aus dem online-Brüche-Buch. https://www.alice.edu.tum.de/bruchrechnen.html#/64


Merke 3
Brüche vergleichen Tafelbild 3.jpg
Übung 2
Bearbeite die LearningApps.





Übung 3

Löse die Aufgaben aus dem Buch. Welche Strategie wählst du für den Größenvergleich. Schreibe deine Idee zur Aufgabe ins Heft.

  • S. 46 Nr. 1
  • S. 46 Nr. 2
  • S. 46 Nr. 3
  • S. 46 Nr. 5

Die Brüche in Aufgabenteil a) und b) sind gleichnamig, vergleiche also die Zähler.

Im Aufgabenteil c) nutze den Vergleich mit der Hälfte, den Vergleich der Zähler und den Vergleich der Nenner. Alternativ kannst du alle Brüche auf den Nenner 8 erweitern.
Denke bei Aufgabe 2a an echte und unechte Brüche. Echte Brüche sind kleiner als 1, unechte größer. Bei 2b musst du schauen, ob der Zähler, weniger als die Hälfte des Nenners hat, dann ist der Bruch kleiner als , ist der Zähler genau die Hälfte des Nenners ist es genau und ist der Zähler größer als die Hälfte des Nenners, ist der Bruch größer als . Bei 2c musst du nur die Brüche finden, deren Zähler größer als die Hälfte des Nenners sind.
Suche immer den gemeinsamen Nenner und erweitere oben (Zähler) mit derselben Zahl wie unten (Nenner).

Wenn du Probleme bei der Bearbeitung hast, schau nochmal das folgende Video an.


Übung 4

Löse die Aufgaben aus dem Buch. Welche Strategie wählst du für den Größenvergleich. Schreibe deine Idee zur Aufgabe ins Heft.

  • S. 46 Nr. 7
  • S. 46 Nr. 8
  • S. 46 Nr. 9
Vergleiche die Brüche zunächst mit einem Ganzen, danach mit der Hälfte. Lies noch einmal im Merkkasten 2.
Schau noch einmal den Merkkasten 1 an. Dann fällt dir die Lösung der Aufgabe leicht.

Mache die Brüche gleichnamig. Lies noch einmal Merkkasten 3.
a) Der Hauptnenner ist 24.
b) Der Hauptnenner ist 36.
c) Der Hauptnenner ist 72.

d) Der Hauptnenner ist 144.