Herta-Lebenstein-Realschule/Lernpfad Brüche/Prozent: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(28 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Datei:Schullogo HLR.jpg|rechts|rahmenlos|80x80px]] | |||
{{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}SEITE IM AUFBAU (noch überarbeiten)<br> | {{Fortsetzung|vorher=zurück zur Seite der Herta-Lebenstein-Realschule|vorherlink=Herta-Lebenstein-Realschule}}SEITE IM AUFBAU (noch überarbeiten)<br> | ||
Zeile 9: | Zeile 10: | ||
==5 Prozent== | ==5 Prozent== | ||
{{Box|Einstieg - Prozent|Du hast den Begriff "Prozent" sicher schon oft gehört. Schreibe/Zeichne Beispiele dazu in dein Heft.|Frage}} | |||
{{Lösung versteckt|Prozentrechnung im Alltag<br> | |||
* Wir schenken euch die Mehrwertsteuer von 19%.<br> | |||
* Alle T-Shirts um 20 % reduziert.<br> | |||
* 50% der Klasse hat eine drei oder besser geschrieben.<br> | |||
* Der Pullover besteht zu 40 Prozent aus Seide und 60% aus Baumwolle. | |||
<br /> | <br /> | ||
<gallery> | <gallery> | ||
Zeile 14: | Zeile 23: | ||
Datei:Batteriezustand-080-prozent-by-RalfR.png|Akkuladung <small><small>(von R. Roletschek)</small></small> | Datei:Batteriezustand-080-prozent-by-RalfR.png|Akkuladung <small><small>(von R. Roletschek)</small></small> | ||
Datei:Pie-chart-1569175 1920.jpg|Wahlergebnisse <small><small> (von Deedster auf Pixabay)</small></small> | Datei:Pie-chart-1569175 1920.jpg|Wahlergebnisse <small><small> (von Deedster auf Pixabay)</small></small> | ||
</gallery> | </gallery>|Ideensammlung|Verbergen}} | ||
{{Box| | |||
Du siehst, dass die Prozentrechnung häufig Verwendung findet. Was dieser Begriff bedeutet und was er mit Brüchen zu tun hat, erarbeitest du nun. | |||
Wie | |||
{{Box|Einstieg - Downloadbalken|Der Balken zeigt den Fortschritt des Downloads einer Datei an.<br> | |||
[[Datei:Downloadbalken lang.png|rahmenlos]]<br> | |||
Lisa meint:“Es sind schon ungefähr <math>\tfrac{3}{4}</math> der Datei heruntergeladen.“<br> | |||
* Was meinst du? Begründe! | |||
* Der Computer gibt den Downloadfortschritt auch in Prozent an. Wie viel Prozent der Datei sind schon heruntergeladen?|Meinung}} | |||
Vergleiche den Downloadbalken mit dem 4er Bruchstreifen, dem 10er Bruchstreifen und dem 100er Bruchstreifen:<br> | |||
[[Datei:Downloadbalken mit 4er Steifen.png|rahmenlos]]<br> | |||
[[Datei:Downloadbalken mit 10er Streifen.png|rahmenlos]]<br> | |||
[[Datei:Downloadbalken mit 10er und 100er Streifen.png|rahmenlos]]<br> | |||
Was meinst du zu Lisas Aussage? | |||
< | {{Box|1=Merke - Prozente|2=Prozente sind besondere Brüche, sie geben den Anteil "pro Hundert" an. Prozent heißt "pro Hundert".(Prozent kommt aus dem Lateinischen "pro centum")<br>Prozente sind Brüche mit dem Nenner 100, also hundertstel:<br> | ||
1 % bedeutet "1 pro 100".<br> | |||
1 % = <math>\tfrac{1}{100}</math><br> | |||
2 % = <math>\tfrac{2}{100}</math><br> | |||
... | |||
10 % = <math>\tfrac{10}{100}</math> usw.<br> | |||
|3=Arbeitsmethode}} | |||
Du kannst Prozente mit dem 100er-Bruchstreifen darstellen:<br> | |||
[[Datei:100er Streifen mit 10ern.png|rahmenlos|600x600px]]<br> | |||
{{Lösung versteckt|Nun kannst du angeben, wie viel Prozent der Datei schon heruntergeladen sind: 70%.|Lösung zur Einstiegsaufgabe|Verbergen}} | |||
{{Box|Übung 1|Bearbeite die LearningApps.|Üben}} | |||
{{LearningApp|app=pp4v2q3gn22|width=100%|height=300px}} | |||
{{LearningApp|app=p9mhj2uea22|width=100%|height=600px}} | |||
{{Box|1=Prozentangaben in Brüche umwandeln|2=Du kannst Prozentangaben in Brüche umwandeln:<br> | |||
75% = <math>\tfrac{75}{100}</math> = <math>\tfrac{3}{4}</math><br> [[Datei:75% sind 3 4tel mit Bruchstreifen.png|rahmenlos]]<br> | |||
40% = <math>\tfrac{40}{100}</math> = <math>\tfrac{2}{5}</math><br> [[Datei:40% gleich 2 5tel mit Bruchstreifen.png|rahmenlos|300x300px]]<br> | |||
Und nun ohne Bild: | |||
32% = <math>\tfrac{32}{100}</math> = <math>\tfrac{8}{25}</math> (gekürzt).|3=Arbeitsmethode}} | |||
<math>\ | |||
|3= | |||
{{#ev:youtube| | <div class="grid"> | ||
< | <div class="width-1-2">{{#ev:youtube|MGpM8FWEzsw|420|center|||start=0&end=49}}</div> | ||
< | <div class="width-1-2">{{#ev:youtube|SnLAmeu_lbE|420|center}}</div> | ||
</div> | |||
< | |||
{{Box|Übung 2|Löse die nachfolgenden LearningApps.|Üben}} | |||
{{ | |||
{{LearningApp|app=pqe6x9pna19|width=100%|heigth=600px}} | {{LearningApp|app=pqe6x9pna19|width=100%|heigth=600px}} | ||
{{LearningApp|app=pdemok62k21|width=100%|height=400px}} | |||
{{Box|Übung 3|Löse die Aufgabe aus dem Buch. Schreibe die Aufgabe ab und wandle dann um. Kürze vollständig. | |||
* S. 47 Nr. 2|Üben}} | |||
{{Lösung versteckt|1=Schreibe die Prozentzahl als Bruch und kürze gegebenenfalls. Beispiel 16% = <math>\frac{16}{100}</math> = <math>\frac{4}{25}</math> |2=Tipp zu Nr. 2|3=Verbergen}} | |||
<br> | <br> | ||
{{ | |||
{{ | {{Box|1=Brüche in Prozentangaben umwandeln|2=Und nun umgekehrt: Wandle die Brüche in Prozentangaben um. Du benötigst also den <span style="color:red">'''Nenner 100'''! </span><br> | ||
<math>\tfrac{3}{10}</math> = <math>\tfrac{30}{100}</math> = 30%<br>[[Datei:3 10er sind 30% mit Bruchstreifen.png|rahmenlos]]<br> | |||
<math>\tfrac{7}{20}</math> = <math>\tfrac{35}{100}</math> = 35%<br> [[Datei:7 20tel sind 35% mit Bruchstreifen.png|rahmenlos]]<br> | |||
Und nun ohne Bild: | |||
<math>\tfrac{8}{25}</math> = <math>\tfrac{32}{100}</math> = 32%.|3=Arbeitsmethode}} | |||
<br> | <br> | ||
{{#ev:youtube|bbjTr0YsFOs|800|center}} | |||
{{Box|Übung . | |||
{{Box|Übung 4|Löse die nachfolgenden LearningApps.|Üben}} | |||
{{LearningApp|app=pdzdke9h319|width=100%|heigth=600px}} | |||
{{LearningApp|app=pdemok62k21|width=100%|height=400px}} | |||
{{LearningApp|app=p6yzz00vj21|width=100%|height=400px}} | |||
{{LearningApp|app=pgmock9tv21|width=100%|height=400px}} | |||
{{Box|Übung 5|Löse die Aufgabe aus dem Buch. Schreibe die Aufgabe ab und wandle dann um. | |||
* S. 47 Nr. 1 | * S. 47 Nr. 1 | ||
* S. | * S. 48 Nr. 4|Üben}} | ||
{{Lösung versteckt|1=Erweitere die Brüche so, dass du den Nenner 100 erhältst.<br> | |||
Erinnerung: Verliebte Zahlen der Multiplikation:<br> | |||
2 · 50 = 100<br> | |||
20 · 5 = 100<br> | |||
4 · 25 = 100<br>|2=Tipp zu Nr. 1 und 4|3=Verbergen}} | |||
<br> | <br> | ||
<br> | <br> | ||
<br> | <br> | ||
{{Box|Übung 6 - Anteile und Prozente in Bildern|Löse die Aufgaben aus dem Buch. | |||
* S. 48 Nr. 7 | |||
* S. 48 Nr. 8 | |||
|Üben}} | |||
{{Box| | |||
{{Lösung versteckt|1=Bestimme zunächst den Anteil der gefärbten Fläche. Wandle diesen Bruch dann in einen Bruch mit dem Nenner 100 um. Dann kannst du die Prozente angeben.<br> | |||
{{Lösung versteckt| | a) Es sind <math>\frac{1}{5}</math> der Fläche gefärbt.<br> | ||
<math>\frac{}{5}</math> = <math>\frac{...}{100}</math> = ... %|2=Tipp zu Nr. 7|3=Verbergen}} |
Aktuelle Version vom 6. Oktober 2024, 11:50 Uhr
SEITE IM AUFBAU (noch überarbeiten)
1 Brüche und gemischte Zahlen
2 Brüche am Zahlenstrahl
3 Brüche erweitern und kürzen
4 Brüche vergleichen und ordnen
5 Prozent
Prozentrechnung im Alltag
- Wir schenken euch die Mehrwertsteuer von 19%.
- Alle T-Shirts um 20 % reduziert.
- 50% der Klasse hat eine drei oder besser geschrieben.
- Der Pullover besteht zu 40 Prozent aus Seide und 60% aus Baumwolle.
Du siehst, dass die Prozentrechnung häufig Verwendung findet. Was dieser Begriff bedeutet und was er mit Brüchen zu tun hat, erarbeitest du nun.
Vergleiche den Downloadbalken mit dem 4er Bruchstreifen, dem 10er Bruchstreifen und dem 100er Bruchstreifen:
Was meinst du zu Lisas Aussage?
Du kannst Prozente mit dem 100er-Bruchstreifen darstellen:
Erweitere die Brüche so, dass du den Nenner 100 erhältst.
Erinnerung: Verliebte Zahlen der Multiplikation:
2 · 50 = 100
20 · 5 = 100
Bestimme zunächst den Anteil der gefärbten Fläche. Wandle diesen Bruch dann in einen Bruch mit dem Nenner 100 um. Dann kannst du die Prozente angeben.
a) Es sind der Fläche gefärbt.