Benutzer:Buss-Haskert/Pythagoras/Satz des Pythagoras: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 144: | Zeile 144: | ||
...|2=Tipp zu Nr. 4c|3=Verbergen}} | ...|2=Tipp zu Nr. 4c|3=Verbergen}} | ||
{{Lösung versteckt|1=Um x zu berechnen, teile das Dreieck in zwei rechtwinklige Teildreiecke ein (wie in der Skizze gegeben) und berechne die einzelnen Teilstrecken x<sub>1</sub> und x<sub>2</sub>. x = x<sub>1</sub> + x<sub>2</sub>|2=Tipp zu Nr. 5d|3=Verbergen}} | {{Lösung versteckt|1=Um x zu berechnen, teile das Dreieck in zwei rechtwinklige Teildreiecke ein (wie in der Skizze gegeben) und berechne die einzelnen Teilstrecken x<sub>1</sub> und x<sub>2</sub>. x = x<sub>1</sub> + x<sub>2</sub>|2=Tipp zu Nr. 5d|3=Verbergen}} | ||
{{Lösung versteckt|Wichtig für die Skizze ist die Angabe, dass <math>\gamma</math>=90° ist. | {{Lösung versteckt|1=Wichtig für die Skizze ist die Angabe, dass <math>\gamma</math>=90° ist. | ||
[[Datei:Rechtwinkliges Dreieck ABC.png|rahmenlos]]|Tipp zu Nr. 6 (Skizze)|Verbergen}} | [[Datei:Rechtwinkliges Dreieck ABC.png|rahmenlos]]|2=Tipp zu Nr. 6 (Skizze)|3=Verbergen}} | ||
{{Lösung versteckt|[[Datei:Rechtwinkliges Dreieck alpha 90°.png|rahmenlos]] <br>[[Datei:Rechtwinkliges Dreieck beta 90°.png|rahmenlos]]<br> [[Datei:Rechtwinkliges Dreieck gamma 90°.png|rahmenlos]]|Tipp zu Nr. 7 (Skizzen)|Verbergen}} | {{Lösung versteckt|[[Datei:Rechtwinkliges Dreieck alpha 90°.png|rahmenlos]] <br>[[Datei:Rechtwinkliges Dreieck beta 90°.png|rahmenlos]]<br> [[Datei:Rechtwinkliges Dreieck gamma 90°.png|rahmenlos]]|Tipp zu Nr. 7 (Skizzen)|Verbergen}} | ||
Version vom 16. Februar 2021, 15:00 Uhr
SEITE IM AUFBAU!
1) Rechtwinklige Dreiecke zeichnen mit dem Satz des Thales
2) Satz des Pythagoras
2 Satz des Pythagoras
2.1 12-Knoten-Seil
Prüfe deine Beobachtung mithilfe des nachfolgenden Applets.
Applet von Pöchtrager
Was hat das mit dem Satz des Pythagoras zu tun?
2.2 Satz des Pythagoras
Applet von Pöchtrager
Überprüfe die Aussage des Satzes von Pythagoras mithilfe des nachfolgenden Applets.
Applet von Pöchtrager
Beweis Nr. 1:
Applet von J. Mil
Beweis Nr. 2:
Applet von B.Lachner
Beweis Nr. 3:
Applet von Pöchtrager
Beweis Nr. 4:
Auch im Lied von Dorfuchs findest du einen Beweis für den Satz des Pythagoras:
2.3 Fehlende Seitenlängen in rechtwinkligen Dreiecken berechnen mit dem Satz des Pythagoras
Beispiel 1: Die Katheten sind gegeben und die Hypotenuse ist gesucht.
geg: rechtwinkliges Dreieck mit γ=90°; Katheten: a = 4cm; b = 6cm
ges: Hypotenuse c
c² = a² + b² |
c = |Werte einsetzen
c = |berechnen
(c = diesen Schritt musst du nicht notieren)
c 7,2 [cm]
Beispiel 2: Die Hypotenuse und eine Kathete sind gegeben und die andere Kathete ist gesucht.
geg: rechtwinkliges Dreieck mit γ=90°; Kathete: a = 14cm; Hypotenuse c = 17,5cm
ges: Kathete b
a² + b² = c² |-a²
b² = c² - a² |
b = |Werte einsetzen
b = |berechnen
(b = diesen Schritt musst du nicht notieren)
b = 10,5 [cm]
Hinweis zum Runden: Runde auf so viele Nachkommastellen, wie die Werte in der Aufgabenstellung haben.
Übungen (GeoGebra-Applets von Pöchtrager)
In Aufgabenteil a) ist eine Kathete 4cm lang, von der anderen Kathete kennst du nur das Quadrat (20cm²). Gesucht ist die Hypotenuse x.
x² = 4² + 20 (20 ist schon das Quadrat der zweiten Kathete)
x =
In Aufgabenteil c) sind die Katheten gleich lang, das Quadrat der Hypotenuse ist gegeben.
50 = x² + x²
50 = 2x² |:2
25 = x²
2.4 Umkehrung des Satzes von Pythagoras
a) a und b sind die kürzeren Seiten, c ist die längste Seite.
a² + b² = c²
8² + 15² = 17²
289 = 289 (w)
2.5 Besondere Figuren konstruieren mit dem Satz des Pythagoras
(Appelt von Pöchtrager)