Benutzer:Stoll-Gym10Erfurt/Mathematik9/Quadratische Funktionen
Aus ZUM Projektwiki
Übungen "Lineare Funktion" zur Wiederholung
Darstellungsformen der quadratischen Funktion
Allgemeine Aussagen
Die Normalparabel
Die Normalparabel zeichnen und grundlegende Eigenschaften
Die Scheitelpunktform
Die quadratische Funktion in der Form
Die quadratische Funktion in der Form
Die Normalform
Eigenschaften der Funktion
Definitionsbereich: | alle x ∈ R |
---|---|
Wertebereich: | y ∈ R, Menge der reellen Zahlen, die größer als die y–Koordinate des Scheitels sind |
Scheitelpunkt: | wird von p und q beeinflusst, Berechnung erfolgt später |
Monotonie: | bis zum Scheitel monoton fallend |
ab dem Scheitel monoton steigend | |
Symmetrieachse: | eine Parallele zur y – Achse, die durch den Scheitelpunkt verläuft |
Die allgemeine Form
Begriffe
quadratisches Glied im Term | |
lineares Glied im Term | |
konstantes Glied im Term |
Eigenschaften der Funktion
Definitionsbereich: | alle x ∈ R |
---|---|
Wertebereich: | y ∈ R, Menge der reellen Zahlen, die größer bzw. kleiner als die y–Koordinate des Scheitels sind |
Scheitelpunkt: | |
Form der Parabel: | a=1 (verschobene) Normalparabel |
nach oben geöffnet für a > 0 | |
nach unten geöffnet für a < 0 | |
gestreckt für | |
gestaucht für | |
Monotonie: | Für ist die Funktion ... |
monoton steigend, wenn gilt. | |
monoton steigend, wenn gilt. | |
Symmetrie: | achsensymmetrisch |
Umwandlung aus der allgemeinen Form in die Scheitelpunktform
Anwendungsaufgaben