Benutzer:L.hodankov/Quadratische Funktionen/Anwendungen

Aus ZUM Projektwiki

Diese Seite des Lernpfades wurde teilweise übernommen von der Seite Herta-Lebenstein-Realschule https://projekte.zum.de/wiki/Benutzer:Buss-Haskert/Quadratische_Funktionen. Der Autor ist Buss-Haskert. Diese Seite wurde veröffentlicht unter der Lizenz CC BY SA.

Herzlichen Dank!

SEITE IM AUFBAU

4 Modellieren - Anwendungsaufgaben

In unserer Umgebung gibt es viele Beispiele für Parabeln. Besonders häufig sind sie z.B. beim Brückenbau und bei Wurf- bzw. Flugbahnen zu sehen.
Es gibt besondere Punkte, die in Anwendungen immer wieder von Bedeutung sind:

  • Scheitelpunkt
  • Nullstellen
  • Schnittpunkt mit der y-Achse
  • Koordinaten eines beliebigen Punktes

Wenn in Anwendungsaufgaben die Funktionsgleichung gegeben ist, schau, welche Form sie hat, zeichne eine passende Skizze, beschrifte die Achsen und trage gegebene Punkte ein.

f(x) = ax² mit S(0|0)
F(x)=ax².png
f(x) = ax² + c mit S(0|c)
F(x)=ax²+c.png
f(x) = a(x + d)² + e mit S(-d|e)
F(x)=a(x+d)²+e.png


Beispiel 1:
Golden-Gate-Bridge.svg

(Autor:Roulex 45; https://de.wikipedia.org/wiki/Golden_Gate_Bridge#/media/Datei:Golden-Gate-Bridge.svg)

Beispiel 2:
Weitsprung mit Koordinatenachsen.png

Beispiel 3:
Golfball Aufgabe.png


Übung 1: Modellieren mit quadratischen Funktionen
Löse die Aufgaben vom Arbeitsblatt 17. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.


Übung 2 - online

Schau die Aufgaben zum Basketball auf der Seite realmath.de an und vollziehe die Lösungsschritte nach.


Übung 3
Löse die Aufgaben vom Arbeitsblatt 18. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.


Übung 4 - online

Bearbeite auf der Seite Aufgabenfuchs die Aufgabe

  • 11