Benutzer:Buss-Haskert/Trigonometrie/Berechnungen in rechtwinkligen Dreiecken

Aus ZUM Projektwiki


Schullogo HLR.jpg


2 Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken


2.1 Größen in rechtwinkligen Dreiecken berechnen

Du kennst schon eine Möglichkeiten, eine fehlende Seitenlänge in einem rechtwinkligen Dreiecken zu berechnen, wenn zwei Seiten gegeben sind:
Idee Flipchart.png

Wenn nun in einem rechtwinkligen Dreieck eine Seite und ein Winkel gegeben sind, kannst du mithilfe von Sinus, Kosinus und Tangens die Längen der anderen Seiten berechnen.
Wo kannst du das anwenden? Warum sollst du das lernen?
Es hilft z.B. bei Vermessungen:

St. Otger von Westen mit eingerüstetem Turm

Wir haben in Klasse 7 die Höhe des Stadtlohner Kirchturms mithilfe einer maßstabsgetreuen Zeichnung bestimmt, erinnerst du dich? Nun haben wir die Möglichkeit, die Höhe auf eine andere Art zu berechnen.

Kirchturm Stadtlohn Skizze.png
Wir messen den Blickwinkel, unter dem wir die Spitze des Kirchturms sehen und die Entfernung zur Kirche. Welche Größen des rechtwinkligen Dreiecks sind also gegeben, welche Größe ist gesucht?

Kirchturm Stadtlohn rechtwinkliges Dreieck.png
Bestimme nun die Höhe des Kirchturms!


Übung 1 (online)
Gib das Seitenverhältnis an und berechne jeweils die Länge der Strecke x in den nachfolgenden LearningApps.


Übung 2 (online und im Heft)

Löse auf der Seite Aufgabenfuchs die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft.

  • 11
  • 20
  • 28



Strecken- und Winkelberechnungen in rechtwinkligen Dreiecken

Sind in einem rechtwinkligen Dreieck zwei Seitenlängen oder eine Seite und ein Winkel gegeben, kannst du fehlenden Größen mithilfe von Sinus, Kosinus und Tangens berechnen.

Wähle das passende Seitenverhältnis aus (Sinus, Kosinus oder Tangens) und stelle - falls nötig - die Formel um.
Übertrage die nachfolgenden Beispiele in dein Heft.


Beispiele:
Beispiel 1: eine Seite (Hypotenuse) und ein Winkel sind gegeben
Beispiel 1 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); c = 6,8 cm; = 56°
ges: a; b; β

① Bestimme a:
sin α =   |∙c
a = sin α ∙ c
a = sin (56°)∙6,8
a 5,6 (cm)

② Bestimme b:
cos α =   |∙c
b = cos α ∙ c
b = cos (56°)∙6,8
b 3,8 (cm)

③ Bestimme β:
Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 56° - 90°
   = 34°



Beispiel 2: eine Seite (Kathete) und ein Winkel sind gegeben
Beispiel 2 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); a = 8,4 cm; = 62,8°
ges: b; c;

① Bestimme c:
sin α =   |∙c
c ∙ sin α = a   |: sin α
c =
c =
   9,4 (cm)

② Bestimme b (mit tan α oder mit dem Satz des Pythagoras):
tan α =   |∙b
b ∙ tan α = a   |: tan α
b =
b =
   4,3 (cm)

③ Bestimme β:
Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 68,2° - 90°
   = 27,2°


Beispiel 3: zwei Seiten sind gegeben (Kathete und Hypotenuse)
Beispiel 4 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); a = 6,3 cm; c = 9,1 cm
ges: b; α; β

① Bestimme b (Pythagoras):
a² + b² = c²  |
b =
b =
b 6,6 (cm)

② Bestimme den Winkel α :
sin α =   
sin α =   | sin-1
43,8°

③ Bestimme β:
Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 43,8° - 90°
   = 46,2°


Der Wert von Sinus, Kosinus und Tangens ist abhängig vom Winkel α. Jedem Sinuswert, Kosinuswert und Tangenswert ist ein Winkel zugeordnet. Den Winkel berechnest du mit der jeweiligen Umkehrfunktion sin-1, cos-1 bzw. tan-1 dem Taschenrechner wie die Bilder zeigen:

Taschenrechner Bild shift markiert.png
Taschenrechner Bild sin markiert rot.png
Taschenrechner Bild Bruchtaste.png
Taschenrechner Bild Pfeil und Klammer zu.png
Taschenrechner Bild Gleichzeichen markiert.png
Taschenrechner Bild shift.png
Taschenrechner Bild sin-1.png
Taschenrechner Bild sin-1 mit Bruch.png
Taschenrechner Bild sin-1 mit Klammer.png
Taschenrechner Bild sin-1 Ergebnis.png



Beispiel 4: zwei Seiten sind gegeben (beide Katheten)
Beispiel 3 Berechnungen.png
geg: rechtwinkliges Dreieck ( = 90°); a = 6,5 cm; b = 3,4 cm
ges: c; α; β

① Bestimme c (Pythagoras):
a² + b² = c²  |
c =
c =
c 7,3 (cm)

② Bestimme den Winkel α :
tan α =   
tan α =   | tan-1
62,4°

③ Bestimme β:
Winkelsummensatz für Dreiecke:
α + β + γ = 180°
β = 180° - α - γ
   = 180° - 62,4° - 90°
   = 27,6°


Der Wert von Sinus, Kosinus und Tangens ist abhängig vom Winkel α. Jedem Sinuswert, Kosinuswert und Tangenswert ist ein Winkel zugeordnet. Den Winkel berechnest du mit der jeweiligen Umkehrfunktion sin-1, cos-1 bzw. tan-1 dem Taschenrechner wie die Bilder zeigen:

Taschenrechner Bild shift markiert.png
Taschenrechner Bild tan.png
Taschenrechner Bild Bruchtaste.png
Taschenrechner Bild Pfeil und Klammer zu.png
Taschenrechner Bild Gleichzeichen markiert.png
Taschenrechner Bild shift.png
Taschenrechner Bild tan-1.png
Taschenrechner Bild tan-1 Bruch.png
Taschenrechner Bild tan-1 Bruch mit Klammer zu.png
Taschenrechner Bild tan-1 Bruch Ergebnis.png



Die Videos fassen die Möglichkeiten der Berechnungen zusammen:


Winkel berechnen

Übungen zum Berechnen von Winkeln mit Sinus, Kosinus und Tanges Winkel findest du auf der Seite Aufgabenfuchs

  • Sinus 13, 14, 15
  • Kosinus 22, 23, 24
  • Tangens 30, 31, 32


Übung 3

Löse die Aufgaben ausführlich im Heft, nutze die Schreibweisen der Beispiele. Übertrage die Planskizzen aus dem Buch in dein Heft.

  • S. 94 Nr. 1
  • S. 94 Nr. 2
  • S. 94 Nr. 3


Übung 4

Zeichne zunächst eine Planskizze mit γ = 90° und markiere die gegebenen Größen. Berechne danach die fehlenden Größen. Notiere deine Rechnungen ausführlich. Buch

  • S. 95 Nr. 4

Rechtwinkliges Dreieck gamma 90°.png

Zwischentest 2: Fehlende Größen in einem rechtwinkligen Dreieck berechnen

1 Wie sieht eine Planskizze für ein Dreieck mit β=90° aus?

Rechtwinkliges Dreieck alpha 90°.png
Rechtwinkliges Dreieck beta 90°.png
Rechtwinkliges Dreieck gamma 90°.png

2 Berechne die fehlenden Größen im Dreieck.

Dreieck Beta 90 Grad, Alpha 46 Grad a 10 cm.png

b = 7,2 cm
b = 13,9 cm
c = 9,7 cm
c = 9,6 cm
γ = 54°
γ = 44°

3 Berechne den fehlenden Größen im Dreieck.

Dreieck rechtwinklig und zwei Seiten gegeben.png

c = 7,4 cm
c = 10,1 cm
α = 61,0°
α = 61,1°
β = 29,0°
β = 28,9°

2.2 Anwendungsaufgaben


Übung 5 (online und im Heft)

Löse auf der Seite Aufgabenfuchs die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft.

  • 17
  • 39
  • 40
  • 41
  • 44


Übung 6

Löse die folgenden Aufgaben aus dem Buch. Zeichne zu jeder Aufgabe eine passende Skizze (rechtwinkliges Dreieck) und notiere deine Rechnungen vollständig und übersichtlich.

  • S. 96 Nr. 14
  • S. 96 Nr. 15
  • S. 97 Nr. 17
  • S. 97 Nr. 19

2.3 Zusammenhang Steigung m und Steigungswinkel α

Steigung in Prozent und Steigungswinkel
Foto Gefälle Skipiste.jpg

Wie wird das Gefälle dieser Piste auf dem Bild dargestellt?

Passt der Winkel?


Du hast zu Beginn drei Möglichkeiten wiederholt, die Steigung z.B. einer Straße anzugeben:
1. in Prozent (mit p% = m),
2. als Steigung m und
3. mit dem Steigungswinkel α.
Mithilfe des Tangens kannst du nun zu einer Steigung m den zugehörigen Steigungswinkel α angeben und umgekehrt.

Steigungsdreieck mit Winkel.png

Steigung m und Steigungswinkel α

Mithilfe des Tangens kannst du nun zu einer Steigung m den zugehörigen Steigungswinkel α angeben und umgekehrt.
Steigung m =

m = und ebenfalls ist tan α = , also gilt

m = tan α


Berechne die Steigung m, wenn der Steigungswinkel α gegeben ist:

geg: α = 7°
ges: m
m = tan α
   = tan (7°)
   0,123

   = 12,3%
Berechne den Steigungswinkel α, wenn die Steigung m gegeben ist.

geg: m = 25% = 0,25
ges: α
tan α = m
tan α = 0,25   |tan-1

 α = 14°



Übung 7

Löse die folgenden Aufgaben aus dem Buch. Zeichne zu jeder Aufgabe eine passende Skizze (rechtwinkliges Dreieck) und notiere deine Rechnungen vollständig und übersichtlich.

  • S. 96 Nr. 12
  • S. 96 Nr. 16


Rampe - Anwendungsaufgabe zur Steigung

Ein Kino möchte eine Rampe bauen. Damit Rollstuhlfahrer diese per Handbetrieb befahren können, darf die Steigung maximal 6% betragen.
a) Wie groß ist der Steigungswinkel α?
b) Wie lang wird die Rampe, wenn ein Höhenunterschied von 0,90 m überwunden werden muss?

Diskutiere deine Ideen mit deinem Partner. Löse dann im Heft. Denke an eine Skizze.


Rampen in Stadtlohn

Die nachfolgenden Bilder zeigen Rampen in Stadtlohn.

Gruppenarbeit: Wählt ein Bild aus und denkt euch eine Anwendungsaufgabe dazu aus.
Bild Steigung Haus Hackenfort.jpg
Bild Steigung Kirche.jpg
Bild Steigung Losbergpark.jpg
Bild Steigung Metzger neu.jpg
Bild Steigung Apotheke.jpg
Bild Steigung Friseur.jpg


2.4 Anwendungen im Raum

Übung 8

Löse die folgenden Aufgaben aus dem Buch. Zeichne zu jeder Aufgabe eine passende Skizze (rechtwinkliges Dreieck) und notiere deine Rechnungen vollständig und übersichtlich.

  • S. 105 Nr. 2
  • S. 105 Nr. 3
  • S. 105 Nr. 4
  • S. 105 Nr. 5

Applet zu Nr. 2 Originallink: https://www.geogebra.org/m/bzbzxnzc


Übung 9 (online und im Heft)

Löse auf der Seite Aufgabenfuchs die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft.

  • 75
  • 76
  • 78


Zwischentest 3: Anwendungsaufgabe

1 Trapez Deich Querschnitt.png

Löse die Aufgabe im Heft. Kontrolliere deine Endergebnisse durch Ankreuzen der richtigen Lösungen unten.
Gegeben ist der Querschnitt eines Deiches. Berechne den Böschungswinkel α und die Sohlenlänge (Länge der unteren Seite).

α = 3°
α = 17,7°
Sohlenlänge ≈ 34m
Sohlenlänge ≈ 37m

2 Wie viel Erde wird für einen 2 km langen Deich benötigt?

V ≈ 256000 m³
V ≈ 236800 m³

Aufgaben für Profis

Eine weitere Möglichkeit der Gelände-Vermessungen sind doppelte Peilungen: Schaffst du, die nachfolgenden anspruchsvollen Aufgaben?

Übung 10 (online und im Heft)

Löse auf der Seite Aufgabenfuchs die folgenden Aufgaben. Notiere zu jeder Aufgabe eine Lösung ausführlich mit Skizze und Rechnung in deinem Heft.

  • 58 **
  • 59 ***
  • 78 ***


Übung 11

Aufgabe Checkliste

Löse S. 115 Nr. 6 links und rechts. Die Hilfsapplets findest du unten.

Applets von C.Buß-Haskert