Benutzer:Buss-Haskert/Quadratische Funktionen/Verschiebung entlang der y-Achse

Aus ZUM Projektwiki
Schullogo HLR.jpg


4 Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c

f(x) = ax² + c Bedeutung des Parameters c

Untersuche die Bedeutung des Parameters c in der Gleichung f(x) = ax² + c mithilfe der Geometriesoftware GeoGebra.

  • Gib im Algebrafenster die Gleichung f(x) = x² ein. Es wird die Normalparabel gezeichnet.
  • Erstelle einen Schieberegler a.
  • Erstelle einen Schieberegler c.
  • Gib im Algebrafenster die Gleichung f(x) = ax² + c ein. Verändere den Wert von c mithilfe des Schiebereglers. (Die Bedeutung des Parameters a hast du schon erarbeitet.)
  • Wie verändert sich die Parabel? Notiere deine Beobachtungen.

Link zu GeoGebra


Die verschobene Parabel: Bedeutung des Parameters c in f(x) = ax² + c
Der Graph der Funktion f(x) = ax² + c ist eine Parabel mit dem Scheitelpunkt S(0|c). Der Faktor a bestimmt die Öffnung und Form der Parabel, der Summand c verschiebt den Scheitelpunkt entlang der y-Achse.


Übung 8a - Verlauf der Parabel
Bearbeite die nachfolgende LearningApps-Sammlung


Übung 8b - Verlauf der Parabel

Löse die Aufgaben aus dem Buch. Kontrolliere deine Lösungen mit GeoGebra (Parabeln zeichnen lassen).

  • S. 13, Nr. 4
  • S. 13, Nr. 5
  • S. 13, Nr. 8


Übung 9 - online

Bearbeite auf der Seite realmath so viele Aufgaben, bis mindestens 300 Punkte gesammelt hast.


f(x) = ax² + c - Liegt der Punkt auf dem Graphen (Punktprobe) bzw. fehlende Koordinaten bestimmen

Auch bei Parabeln der Form f(x) = ax² + c kannst du mithilfe der "Punktprobe" prüfen, ob ein gegebener Punkt auf der Parabel liegt.
Beispiel: Liegen die Punkte P(2|6) bzw. Q(1|-2) auf dem Graphen von f(x) = 2x² - 4?

Idee Flipchart.png


Setze die Koordinaten des Punktes P in die Funktionsgleichung ein.

f(x) = ax² + c; P(2|6)
6 = 2·2² - 4
6 = 2·4 - 4
6 = 4 (f)
Es ergibt sich eine falsche Aussage, also liegt der Punkt nicht auf der Parabel.

f(x) = ax² + c; Q(1|-2)
-2 = 2·1² - 4
-2 = 2·1 - 4
-2 = -2 (w)
Es ergibt sich eine wahre Aussage, also liegt der Punkt auf der Parabel.

Ebenso kannst du eine fehlende Koordinate (x oder y) berechnen, indem du die gegebene Koordinate in die Gleichung einsetzt und die Gleichung dann auflöst.


Übung 10 - Punktprobe - Liegt der Punkt auf der Parabel?

Löse die Aufgaben aus dem Buch.

  • S. 14, Nr. 14 (Punktprobe)

f(x) = ax² + c - Bestimmen die Funktionsgleichung

Für die Funktionsgleichung f(x) = ax² + c sind c und ein Punkt auf der Parabel gegeben. Dann kannst du den Wert von a mithilfe der "Punktprobe" bestimmen.


Übung 11 - Den Faktor a bestimmen - Funktionsgleichung aufstellen

Löse die Aufgaben aus dem Buch.

  • S. 14, Nr. 10
  • S. 14, Nr. 13
  • S. 14, Nr. 16 (Kontrolliere mit GeoGebra)


Übung 12: Modellieren mit quadratischen Funktionen
Modellieren(1).jpg
Löse die Aufgaben aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
  • S. 25 Nr. 5 (*)
  • S. 25 Nr. 7 (**)
  • S. 25 Nr. 8 (***)
  • S. 25 Nr. 9 (**)