Benutzer:Buss-Haskert/Quadratische Funktionen/Scheitelpunktform

Aus ZUM Projektwiki
Schullogo HLR.jpg


5 Scheitelpunktform quadratischer Funktionen

Die Scheitelpunktform entdecken
Experimentiere mit der Normalparabel f(x) = x². Verschiebe den Scheitelpunkt S im Koordinatensystem und beobachte die Auswirkung auf die Funktionsgleichung. Was fällt dir auf? Diskutiere mit deinem Partner/deiner Partnerin.


Die Scheitelpunktform quadratischer Funktionen

Die quadratische Funktion der Form f(x) = (x+d)²+e heißt Scheitelpunktform. Ihr Graph ist eine verschobene Normalparabel mit dem Scheitelpunkt S(-d|e).

Der Parameter d verschiebt den Scheitelpunkt in x-Richtung: d>0 nach links verschoben ("dusseliger Detelf") und d<0 nach rechts.
Der Parameter e verschiebt den Scheitelpunkt in y-Richtung (nach oben bzw. unten).

Und nun noch einmal schrittweise:

5.1 Detlef: f(x) = (x + d

Detlef ist ebenfalls sportlich, allerdings auch ein wenig dusselig. Er läuft beim Sprint immer in die entgegengesetzte Richtung.



Bedeutung des Parameters d

Welche Rolle spielt detlef ?

Verändere d mit dem Schieberegler. Welche Auswirkungen hat detlef auf das Schaubild der Normalparabel?


f(x) = (x+d)² - Parabeln zeichnen

Erstelle je eine Wertetabelle für die Funktionsgleichungen und zeichne die Parabeln. Nutze verschiedene Farben. Beschreibe die Bedeutung des Parameters d für den Verlauf der Parabel.

Funktionsgleichung -3 -2 -1 0 1 2 3
f(x) = (x+2)² (-3+2)²=1 (-2+2)²=0 (-1+2)=1 (0+2)²=4 (1+2)²=9 (2+2)²16 (3+2)²=25
g(x) = (x+1)² (-3+1)²=4 ...
h(x) = (x-1)² (-3-1)²=16
p(x) = (x-2)² (-3-2)²=25



Übung 12 - online

a) Ordne in der LenarningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.

b) Löse anschließend auf der Seite realmath so viele Aufgaben, dass du mindestens 300 Punkte sammelst.




5.2 Emil: f(x) = x² + e

emil ist ebenfalls sehr sportlich:

Er kann sehr hoch springen, ebenso gut kann er tauchen. Emil beim Hochsprung

Bedeutung des Parameters e

Welche Rolle spielt emil ?

Verändere e mithilfe des Schiebereglers. Welche Auswirkungen hat emil auf das Schaubild der Normalparabel?




Übung 13 - online
  • Ordne in der LearningApp den Funktionsgraphen die passenden Funktionsgleichungen zu.
  • Löse anschließend auf der Seite realmath so viele Aufgaben, dass du mindestens 300 Punkte sammelst.



Die Scheitelpunktform quadratischer Funktionen f(x) = a(x+d)²+e

Zusammenfassung

Bedeutung der Parameter a, d und e:

Scheitelpunktform Bedeutung der Parameter.png



Übung 14 - Scheitelpunktform online
Die Scheitelpunktform quadratischer Funktionen lautet f(X) = a(x + d)² + e. Du hast die Bedeutung der Parameter a(nton), d(etlef) und e(mil) erarbeitet. Wende dein Wissen in den nachfolgenden Übungen an.




Übung 15 - Scheitelpunktform

Löse die Aufgaben aus dem Buch.

  • S. 16, Nr. 1 (Zeichnung mit GeoGebra zur Lösungskontrolle)
  • S. 16, Nr. 2
  • S. 16, Nr. 3


Übung 16 - Verschobene Normalparabel

Bearbeite die nachfolgenden Übungen auf der Seite realmath so lange, bis du jeweils mindestens 300 Punkte gesammelt hast. Erkläre deinem Partner/deiner Partnerin, was in dieser Übung jeweils gefestigt werden soll.


Übung 17 - Scheitelpunktform ablesen und Parabeln zeichnen
Bearbeite die nachfolgenden GeoGebra-Applets.

Originallink: https://www.geogebra.org/m/hgctdsff

Applet von Hans-Jürgen Elschenbroich

Originallink: https://www.geogebra.org/m/CdNTYBpZ


Applets von Wolfgang Wengler

Buch GeoGebra: Parabeln zeichnen
Originallink: https://www.geogebra.org/m/ZTXR23d8#chapter/236008

Applets von Bernhard Krügel

Verschobene Normalparabeln skizzieren/zeichnen ohne Schablone und ohne Wertetabelle

Skizzieren einer verschobenen Normalparabel (ohne Schablone)
Idee Flipchart.png
Um eine verschobene Normalparabel zu zeichnen, gehe vom Scheitelpunkt S aus immer eine Längeneinheit nach rechts und 1 Längeneinheit nach oben und dann 2 LE nach rechts und 4 LE nach oben, nutze danach die Achsensymmetrie der Parabel.
Das Applet zeigt das Skizzieren Schritt für Schritt. Erkläre!

Originallink https://www.geogebra.org/m/jn52gfzu

Applet von C.Buß-Haskert

Das Video erklärt dies noch einmal anschaulich.


Übung 18 - Parabeln skizzieren (ohne Schablone)

Skizziere wie oben beschrieben die verschobenen Normalparabeln ein deinem Heft. Zeichne in ein Koordinatenkreuz, nutze verschiedene Farben.

  • f(x) = (x-2)² - 1
  • g(x) = (x+1)² + 2
  • h(x) = (x-4)² + 1
  • p(x) = (x+3)² - 2


Übung 19

Nachdem du die Aufgaben bis hier erfolgreich gelöst und diskutiert hast, sollten die nachfolgenden Aufgaben aus dem Buch kein Problem mehr für dich sein.

  • S.16, Nr. 4
  • S.16, Nr. 5
  • S.16, Nr. 8
  • S.16, Nr. 9
  • S.16, Nr. 10 (Nutze in GeoGebra die Funktion "Spiegle an Gerade", s.Tipp unten)
  • S.19, Nr. 13
Expertenaufgabe (Ergänzung zu Nr. 10): Spiegle die Parabeln auch an der x-Achse und gib die neue Funktionsgleichung an.


Übung 20 - Punktprobe

Prüfe zeichnerisch (GeoGebra) und rechnerisch (Punktprobe), ob der Punkt P auf der Parabel liegt.

  • S. 16, Nr. 6


Zusammenfassung

Quadratische Funktionen haben verschiedene Strukturen, die zugehörigen Parabeln haben dementsprechend bestimmte Formen.

f(x) = ax² mit S(0|0)
F(x)=ax².png
f(x) = ax² + c mit S(0|c)
F(x)=ax²+c.png
f(x) = a(x + d)² + e mit S(-d|e)
F(x)=a(x+d)²+e.png




Übung 21: Modellieren mit quadratischen Funktionen
Modellieren(1).jpg
Löse die Aufgabe aus dem Buch. Erstelle eine Skizze und notiere deine Lösungen ausführlich und übersichtlich.
  • S. 25, Nr. 6