Digitale Werkzeuge in der Schule/Trainingsfeld Ableitungen/Von der mittleren zur lokalen Änderungsrate

Aus ZUM Projektwiki


Dieser Lernpfad beschäftigt sich mit der mittleren und lokalen Änderungsrate.

  • In Aufgabe 1 geht es darum, die mittlere Änderungsrate zu berechnen. Dies erfolgt in Teilaufgabe a) anhand von Rechenbeispielen. In b) hingegen übst du mittlere Änderungsraten im Sachzusammenhang zu berechnen. Dies ist eine Förderaufgabe. Wenn du schon sicher im Umgang mit mittleren Änderungsraten bist, kannst du diese Aufgabe auch überspringen.
  • In Aufgabe 3 beschäftigst du dich mit der Unterscheidung der mittleren und lokale Änderungsrate. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
  • In Aufgabe 4 musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
  • Den Zusammenhang von mittlerer und lokaler Änderungsrate erarbeitest du in Aufgabe 5.Dies ist eine Förderaufgabe.
  • In Aufgabe 6 geht es um die geometrischen Zusammenhänge. Dies ist eine Forderaufgabe.

Viel Spaß beim Bearbeiten! :)



Merke
Sekante: Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an.
Sekante durch zwei Punkte eines Funktionsgraphen


Merke

Tangente: Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.

Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente


Merke

Die lokale Änderungsrate

Die lokale Änderungsrate einer Funktion gibt die Steigung in einem Punkt an. Anders gesagt, gibt die lokale Änderungsrate die Steigung der Tangente an der Stelle an. Die Steigung der Tangente entspricht der Ableitung der Funktion . Somit lässt sich die lokale Änderungsrate mit Hilfe der Ablteitung berechnen. Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.

Der Grenzwert heißt Differenzialquotient.

Error: www.youtube.com is not an authorized iframe site..

Bestimmung von mittleren Änderungsraten

Aufgabe 1: Berechnung der mittleren Änderungsrate
{{{2}}}


Aufgabe 2: Berechnung der mittleren Änderungsrate im Sachkontext
{{{2}}}



Unterscheidung der Änderungsraten

Aufgabe 3: Unterscheidung der mittleren und lokalen Änderungsrate

- ! mittlere Änderungsrate !! lokale Änderungsrate


Änderungsraten im Sachzusammenhang

Aufgabe 4: Änderungsraten im Sachzusammenhang
{{{2}}}


Zusammenhang von mittlerer und lokaler Änderungsrate

Aufgabe 5: Zusammenhang von mittleren und lokalen Änderungsrate
{{{2}}}


Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate

Aufgabe 6: Geometrischer Zusammenhang von mittleren und lokalen Änderungsrate (Forder-Aufgabe)
{{{2}}}