Digitale Werkzeuge in der Schule/Trainingsfeld Ableitungen/Von der mittleren zur lokalen Änderungsrate: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Main>Anne WWU3
Keine Bearbeitungszusammenfassung
Main>Julia WWU3
Keine Bearbeitungszusammenfassung
Zeile 18: Zeile 18:
*In '''Aufgabe 4''' musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
*In '''Aufgabe 4''' musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.


* Den '''Zusammenhang von mittlerer und lokaler Änderungsrate''' erarbeitest du in '''Aufgabe 5'''.Dies ist eine Förderaufgabe.  
* Den '''Zusammenhang von mittlerer und lokaler Änderungsrate''' erarbeitest du in '''Aufgabe 5'''. Dies ist eine Förderaufgabe.  


* In '''Aufgabe 6''' geht es um die '''geometrischen Zusammenhänge'''. Dies ist eine Forderaufgabe.
* In '''Aufgabe 6''' geht es um die '''geometrischen Zusammenhänge'''. Dies ist eine Forderaufgabe.
Zeile 42: Zeile 42:
<math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math>.
<math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math>.


Der Ausdruck <math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math> wird auch '''Differenzenquotient''' genannt. }}
Der Ausdruck <math>\frac {f(x_1)-f(x_0)} {x_1-x_0}</math> wird auch '''Differenzenquotient''' genannt.}}


{{Merke|
{{Merke|
Zeile 50: Zeile 50:
Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.  
Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.  


Der Grenzwert '''<math>\overrightarrow{h \rightarrow0}\frac{f(x+h)-f(x)} {h}</math>''' heißt '''Differenzialquotient'''.
Der Grenzwert von '''<math>\frac{f(x+h)-f(x)} {h}</math>''' für h gegen 0 heißt '''Differenzialquotient'''.}}
 
<iframe width="560" height="315" src="https://www.youtube.com/embed/6HDhATXNCGU" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>.}}


{{Merke|'''Sekante''': Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. [[File:Afgeleide.svg|250px|links|rahmenlos|Sekante durch zwei Punkte eines Funktionsgraphen]]}}
{{Merke|'''Sekante''': Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. [[File:Afgeleide.svg|250px|links|rahmenlos|Sekante durch zwei Punkte eines Funktionsgraphen]]}}
Zeile 230: Zeile 228:
<iframe src="https://learningapps.org/watch?v=pdbfw1aq318" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>
<iframe src="https://learningapps.org/watch?v=pdbfw1aq318" style="border:0px;width:100%;height:300px" webkitallowfullscreen="true" mozallowfullscreen="true"></iframe>


<popup name="Tipp">Der Grenzwert des Differenzenquotienten ist der Differentialquotient <math> \lim_{x \to 2} \frac{f(2)-f(x)} {2-x}</math></popup>
<popup name="Tipp">Der Grenzwert des Differenzenquotienten ist der Differentialquotient <math> \frac{f(2)-f(x)} {2-x}</math></popup> für x gegen 2.


<popup name="Lösung zu 3)"> Wenn der Differenzenquotient einen bestimmten Wert, z.B. -0,95 bei x=1,9, annimmt, entspricht der Wert der mittleren Änderungsrate der Funktion im Intervall [1,9;2]. Wenn man kleinere Intervalle betrachtet, nähert sich der Differenzenquotient -1 an. Das bedeutet, in der Umgebung von x=2 liegt die Änderungsrate nahe bei -1. Da die Änderungsrate in einem Punkt von dem Differenzialquotient angegeben wird, entspricht der der Grenzwert des Differenzenquotienten →<math>\frac{f(2)-f(x)} {2-x}</math> dem Differenzialquotienten. Letzterer gibt die lokale Änderungsrate im Punkt <math>P = (2|2,5)</math> an.</popup>}}
<popup name="Lösung"> Wenn der Differenzenquotient einen bestimmten Wert, z.B. -0,95 bei x=1,9, annimmt, entspricht der Wert der mittleren Änderungsrate der Funktion im Intervall [1,9;2]. Wenn man kleinere Intervalle betrachtet, nähert sich der Differenzenquotient -1 an. Das bedeutet, in der Umgebung von x=2 liegt die Änderungsrate nahe bei -1. Da die Änderungsrate in einem Punkt von dem Differenzialquotient angegeben wird, entspricht der der Grenzwert des Differenzenquotienten →<math>\frac{f(2)-f(x)} {2-x}</math> dem Differenzialquotienten. Letzterer gibt die lokale Änderungsrate im Punkt <math>P = (2|2,5)</math> an.</popup>}}


==Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate==
==Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate==

Version vom 27. November 2018, 18:17 Uhr


Dieser Lernpfad beschäftigt sich mit der mittleren und lokalen Änderungsrate.

  • In Aufgabe 1 kannst du die Berechnung der mittlere Änderungsrate anhand von Rechenbeispielen ohne Sachzusammenhang wiederholen. Diese Aufgabe ist eine Förderaufgabe.
  • In Aufgabe 2 übst du die Berechnung der mittlere Änderungsrate im Sachkontext. Diese Aufgabe ist eine Förderaufgabe. Wenn du schon sicher bei der Berechnung mittleren Änderungsraten bist, kannst du Aufgabe 1 und 2 auch überspringen.
  • In Aufgabe 3 beschäftigst du dich mit der Unterscheidung der mittleren und lokale Änderungsrate. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
  • In Aufgabe 4 musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
  • Den Zusammenhang von mittlerer und lokaler Änderungsrate erarbeitest du in Aufgabe 5. Dies ist eine Förderaufgabe.
  • In Aufgabe 6 geht es um die geometrischen Zusammenhänge. Dies ist eine Forderaufgabe.

Viel Spaß beim Bearbeiten! :)


Die wichtigsten Begriffe dieses Kapitels

Bevor du mit den Aufgaben beginnst, sind hier schonmal die wichtigsten Begriffe dieses Kapitels in Merkkästchen erklärt. Wenn du dir während der Bearbeitung der einzelnen Aufgaben unsicher bist, kannst du sie dir immer wieder anschauen, um dich zu erinnern. Falls du schon sicher im Umgang mit den folgenden Begriffen bist, kannst du sie zu Anfang auch einfach überlesen und direkt mit den Aufgaben beginnen.



Merke

Die mittlere Änderungsrate und wie man sie berechnet

Die mittlere Änderungsrate einer Funktion in einem Intervall gibt die durchschnittliche Veränderung der Funktionswerte von in diesem Bereich an. Anders gesagt gibt die mittlere Änderungsrate die Steigung der Sekanten an, die die Punkte und verbindet.

Die mittlere Änderungsrate in einem Intervall berechnet man so: .

Der Ausdruck wird auch Differenzenquotient genannt.


Merke

Die lokale Änderungsrate und wie man sie berechnet

Die lokale Änderungsrate einer Funktion gibt die Steigung in einem Punkt an. Anders gesagt, gibt die lokale Änderungsrate die Steigung der Tangente an der Stelle an. Die Steigung der Tangente entspricht der Ableitung der Funktion . Somit lässt sich die lokale Änderungsrate mit Hilfe der Ablteitung berechnen. Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.

Der Grenzwert von für h gegen 0 heißt Differenzialquotient.


Merke
Sekante: Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an.
Sekante durch zwei Punkte eines Funktionsgraphen


Merke

Tangente: Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.

Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente


Berechnung der mittleren Änderungsrate

Aufgabe 1: Berechnung der mittleren Änderungsrate
{{{2}}}


Berechnung der mittleren Änderungsrate im Sachkontext

Aufgabe 2: Berechnung der mittleren Änderungsrate im Sachkontext
{{{2}}}



Unterscheidung der Änderungsraten

Aufgabe 3: Unterscheidung der mittleren und lokalen Änderungsrate

- ! mittlere Änderungsrate !! lokale Änderungsrate


Änderungsraten im Sachzusammenhang

Aufgabe 4: Änderungsraten im Sachzusammenhang
{{{2}}}


Zusammenhang von mittlerer und lokaler Änderungsrate

Aufgabe 5: Zusammenhang von mittleren und lokalen Änderungsrate
{{{2}}}


Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate

Aufgabe 6: Geometrischer Zusammenhang von mittleren und lokalen Änderungsrate (Forder-Aufgabe)
{{{2}}}