Digitale Werkzeuge in der Schule/Trainingsfeld Ableitungen/Von der mittleren zur lokalen Änderungsrate: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Main>Anne WWU3
Keine Bearbeitungszusammenfassung
Main>Anne WWU3
Keine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:
Dieser Lernpfad beschäftigt sich mit der '''mittleren''' und '''lokalen Änderungsrate'''.
Dieser Lernpfad beschäftigt sich mit der '''mittleren''' und '''lokalen Änderungsrate'''.


* In '''Aufgabe 1''' geht es darum, die '''mittlere Änderungsrate''' zu berechnen. Dies erfolgt in Teilaufgabe a) anhand von Rechenbeispielen. In b) hingegen übst du mittlere Änderungsraten im Sachzusammenhang zu berechnen. Dies ist eine Förderaufgabe. Wenn du schon sicher im Umgang mit mittleren Änderungsraten bist, kannst du diese Aufgabe auch überspringen.
* In '''Aufgabe 1''' kannst du die '''Berechnung der mittlere Änderungsrate''' anhand von Rechenbeispielen ohne Sachzusammenhang wiederholen. Diese Aufgabe ist eine Förderaufgabe.
 
In '''Aufgabe 2''' übst du die '''Berechnung der mittlere Änderungsrate im Sachkontext'''. Diese Aufgabe ist eine Förderaufgabe. Wenn du schon sicher bei der Berechnung mittleren Änderungsraten bist, kannst du Aufgabe 1 und 2 auch überspringen.


* In '''Aufgabe 3''' beschäftigst du dich mit der '''Unterscheidung der mittleren und lokale Änderungsrate'''. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
* In '''Aufgabe 3''' beschäftigst du dich mit der '''Unterscheidung der mittleren und lokale Änderungsrate'''. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
Zeile 27: Zeile 29:


__TOC__
__TOC__
==Die wichtigsten Begriffe dieses Kapitels==
Bevor du mit den Aufgaben beginnst, sind hier schonmal die wichtigsten Begriffe dieses Kapitels in Merkkästchen erklärt. Wenn du dir während der Bearbeitung der einzelnen Aufgaben unsicher bist, kannst du sie dir immer wieder anschauen, um dich zu erinnern. Falls du schon sicher im Umgang mit den folgenden Begriffen bist, kannst du sie zu Anfang auch einfach überlesen und direkt mit den Aufgaben beginnen.


{{Merke|'''Sekante''': Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. [[File:Afgeleide.svg|250px|links|rahmenlos|Sekante durch zwei Punkte eines Funktionsgraphen]]}}
{{Merke|'''Tangente''': Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.
[[File:Tangente2.svg|250px|links|rahmenlos|Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente]]}}


{{Merke|
{{Merke|
Zeile 43: Zeile 42:


<iframe width="560" height="315" src="https://www.youtube.com/embed/6HDhATXNCGU" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>.}}
<iframe width="560" height="315" src="https://www.youtube.com/embed/6HDhATXNCGU" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>.}}
==Bestimmung von mittleren Änderungsraten==
 
{{Merke|'''Sekante''': Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an. [[File:Afgeleide.svg|250px|links|rahmenlos|Sekante durch zwei Punkte eines Funktionsgraphen]]}}
 
{{Merke|'''Tangente''': Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.
 
[[File:Tangente2.svg|250px|links|rahmenlos|Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente]]}}
 
 
==Berechnung der mittleren Änderungsrate==


{{Aufgaben|1: Berechnung der mittleren Änderungsrate|   
{{Aufgaben|1: Berechnung der mittleren Änderungsrate|   
Zeile 82: Zeile 89:


Berechnung der mittleren Änderungsrate:<math> \frac{h(1)- h(-2)} {1-(-2)}= \frac{(-1)-(-10)} {1-(-2)}= \frac{9} {3}= 3</math> </popup>}}
Berechnung der mittleren Änderungsrate:<math> \frac{h(1)- h(-2)} {1-(-2)}= \frac{(-1)-(-10)} {1-(-2)}= \frac{9} {3}= 3</math> </popup>}}
==Berechnung der mittleren Änderungsrate im Sachkontext==


{{Aufgaben|2: Berechnung der mittleren Änderungsrate im Sachkontext|   
{{Aufgaben|2: Berechnung der mittleren Änderungsrate im Sachkontext|   
Zeile 106: Zeile 115:
<math> \frac {f(2018)-f(2010)} {2018-2010}= \frac {418-210} {2018-2010}= \frac {208} {8}= 26 </math>
<math> \frac {f(2018)-f(2010)} {2018-2010}= \frac {418-210} {2018-2010}= \frac {208} {8}= 26 </math>


Aus der mittleren Änderungsrate kannst du nun ablesen, dass seit 2010 im Durchschnitt pro Jahr 26 Mitglieder in deinem Verein hinzugekommen sind. </popup>
Aus der mittleren Änderungsrate kannst du nun ablesen, dass seit 2010 im Durchschnitt '''pro Jahr 26 Mitglieder''' in deinem Verein hinzugekommen sind. </popup>


'''b)''' Der aktuelle Vorstand arbeitet seit 2016 zusammen. Sein Ziel war eine Steigerung der Mitgliedszahlen. Diese sollte im Mittel größer sein als der durchschnittliche Mitgliederzuwachs in den Jahren davor (also von Beginn der Mitgliedererfassung bis zur Wahl des neuen Vorstands 2016). Ist es Ihnen gelungen ihr Ziel zu erreichen?
'''b)''' Der aktuelle Vorstand arbeitet seit 2016 zusammen. Sein Ziel war eine Steigerung der Mitgliedszahlen. Diese sollte im Mittel größer sein als der durchschnittliche Mitgliederzuwachs in den Jahren davor (also von Beginn der Mitgliedererfassung bis zur Wahl des neuen Vorstands 2016). Ist es Ihnen gelungen ihr Ziel zu erreichen?
Zeile 114: Zeile 123:


<popup name="Lösung">
<popup name="Lösung">
Ja, ihnen ist es knapp gelungen ihr Ziel zu erreichen.
'''Ja, ihnen ist es knapp gelungen ihr Ziel zu erreichen.'''


Um auf diese Lösung zu kommen, musst du die mittleren Änderungsraten in den Jahren vor und nach der Wahl des neuen Vorstands vergleichen.
Um auf diese Lösung zu kommen, musst du die mittleren Änderungsraten in den Jahren vor und nach der Wahl des neuen Vorstands vergleichen.

Version vom 17. November 2018, 09:33 Uhr


Dieser Lernpfad beschäftigt sich mit der mittleren und lokalen Änderungsrate.

  • In Aufgabe 1 kannst du die Berechnung der mittlere Änderungsrate anhand von Rechenbeispielen ohne Sachzusammenhang wiederholen. Diese Aufgabe ist eine Förderaufgabe.
  • In Aufgabe 2 übst du die Berechnung der mittlere Änderungsrate im Sachkontext. Diese Aufgabe ist eine Förderaufgabe. Wenn du schon sicher bei der Berechnung mittleren Änderungsraten bist, kannst du Aufgabe 1 und 2 auch überspringen.
  • In Aufgabe 3 beschäftigst du dich mit der Unterscheidung der mittleren und lokale Änderungsrate. In Teilaufgaben a) und b) geht es darum, festzustellen, wie sich die beiden Änderungsraten unterscheiden. Dies ist eine Förderaufgabe.
  • In Aufgabe 4 musst du im Sachzusammenhang unterscheiden, welche der beiden Änderungsraten berechnet werden soll. Diese Aufgabe ist eine Förderaufgabe.
  • Den Zusammenhang von mittlerer und lokaler Änderungsrate erarbeitest du in Aufgabe 5.Dies ist eine Förderaufgabe.
  • In Aufgabe 6 geht es um die geometrischen Zusammenhänge. Dies ist eine Forderaufgabe.

Viel Spaß beim Bearbeiten! :)


Die wichtigsten Begriffe dieses Kapitels

Bevor du mit den Aufgaben beginnst, sind hier schonmal die wichtigsten Begriffe dieses Kapitels in Merkkästchen erklärt. Wenn du dir während der Bearbeitung der einzelnen Aufgaben unsicher bist, kannst du sie dir immer wieder anschauen, um dich zu erinnern. Falls du schon sicher im Umgang mit den folgenden Begriffen bist, kannst du sie zu Anfang auch einfach überlesen und direkt mit den Aufgaben beginnen.


Merke

Die lokale Änderungsrate

Die lokale Änderungsrate einer Funktion gibt die Steigung in einem Punkt an. Anders gesagt, gibt die lokale Änderungsrate die Steigung der Tangente an der Stelle an. Die Steigung der Tangente entspricht der Ableitung der Funktion . Somit lässt sich die lokale Änderungsrate mit Hilfe der Ablteitung berechnen. Eine weitere Methode zur Bestimmung der lokalen Änderungsrate ist, den Grenzwert des Differenzenquotienten zu bilden.

Der Grenzwert heißt Differenzialquotient.

Error: www.youtube.com is not an authorized iframe site..


Merke
Sekante: Eine Sekante ist eine Gerade zwischen zwei Punkten. Ihre Steigung heißt Sekantensteigung und gibt die mittlere Änderungsrate zwischen diesen beiden Punkten an.
Sekante durch zwei Punkte eines Funktionsgraphen


Merke

Tangente: Eine Tangente ist eine Gerade, die eine Kurve in einem bestimmten Punkt berührt. Dort haben die Kurve und die Tangente dieselbe Steigung. Diese Steigung entspricht der Ableitung der Funktion in diesem Punkt.

Graph einer Funktion mit eingezeichneter Tangente an einem Punkt. Diese Abbildung zeigt, dass die Tangente mehr als einen gemeinsamen Punkt mit dem Graphen haben kann. Graph der Funktion Tangente


Berechnung der mittleren Änderungsrate

Aufgabe 1: Berechnung der mittleren Änderungsrate
{{{2}}}


Berechnung der mittleren Änderungsrate im Sachkontext

Aufgabe 2: Berechnung der mittleren Änderungsrate im Sachkontext
{{{2}}}



Unterscheidung der Änderungsraten

Aufgabe 3: Unterscheidung der mittleren und lokalen Änderungsrate

- ! mittlere Änderungsrate !! lokale Änderungsrate


Änderungsraten im Sachzusammenhang

Aufgabe 4: Änderungsraten im Sachzusammenhang
{{{2}}}


Zusammenhang von mittlerer und lokaler Änderungsrate

Aufgabe 5: Zusammenhang von mittleren und lokalen Änderungsrate
{{{2}}}


Geometrischer Zusammenhang von mittlerer und lokaler Änderungsrate

Aufgabe 6: Geometrischer Zusammenhang von mittleren und lokalen Änderungsrate (Forder-Aufgabe)
{{{2}}}