Digitale Werkzeuge in der Schule/Basiswissen Analysis/Von der Änderungsrate zum Änderungseffekt: Unterschied zwischen den Versionen

Aus ZUM Projektwiki
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 11: Zeile 11:


==Herleitung des Integrals==
==Herleitung des Integrals==
{{Box|1=Definition: Integral|2=
{{Lösung versteckt|1=
Die Funktion <math>f</math> sei auf dem Intervall <math>[a;b]</math> stetig und <math> A_n = f(z_1) \cdot \Delta x + f(z_2) \cdot \Delta x + … + f(z_n) \cdot \Delta x </math> sei eine beliebige Rechtecksumme zu <math>f</math> über dem Intervall <math>[a;b]</math>.
Dann heißt der Grenzwert <math> \textstyle \lim_{n \to \infty} \displaystyle A_n </math> Integral der Funktion <math>f</math> zwischen den Grenzen <math>a</math> und <math>b</math> .
Man schreibt dafür:
<math> \int_{a}{b} f(x) dx </math> (lies: Integral von <math>f(x)</math> von <math>a</math> bis <math>b</math>).
|2=|3=}}
|3=Merke|Farbe=#FF0000 }}
{{Box|1=Hauptsatz der Differenzial- und Integralrechnung|2=
{{Lösung versteckt|1=
Die Funktion <math>f</math> sei stetig auf dem Intervall <math>[a;b]</math>. Dann gilt:
<math> \int_{a}{b} f(x) dx = F(a) – F(b) </math> für eine beliebige Stammfunktion <math>F</math> von <math>f</math> auf <math>[a;b]</math>.
|2=|3=}}
|3=Merke|Farbe=#FF0000 }}


==Rechenregeln und Stammfunktionen bilden==
==Rechenregeln und Stammfunktionen bilden==
Zeile 95: Zeile 125:


==Integral: Rekonstruieren von Größen==
==Integral: Rekonstruieren von Größen==
{{Box|Beispiel|
{{Box|Beispiel|
Ein zu Beginn leerer Wassertank wird durch dieselbe Leitung befüllt und entleert. In Figur ist die momentane Durchflussrate f der Leitung für das Intervall [0;9] dargestellt.
{{Lösung versteckt|1=
 
Ein zu Beginn leerer Wassertank wird durch dieselbe Leitung befüllt und entleert. In Figur ist die momentane Durchflussrate f der Leitung für das Intervall <math>[0;9]</math> dargestellt.
 
 
[[Datei:Durchflussrate Figur 1.png|alternativtext=Beispielaufgabe|mini|900px|center|Figur 1]]
[[Datei:Durchflussrate Figur 1.png|alternativtext=Beispielaufgabe|mini|900px|center|Figur 1]]
Es stellt sich die Frage wie aus der gegebenen Durchflussrate das Gesamtwasservolumen bestimmt werden kann? Dass bedeutet, wie viel Liter Wasser befinden sich nach 9 min im Wassertank?
Es stellt sich die Frage wie aus der gegebenen Durchflussrate das Gesamtwasservolumen bestimmt werden kann? Dass bedeutet, wie viel Liter Wasser befinden sich nach 9 min im Wassertank?


{{Lösung versteckt|Es befinden sich nach 9 min 2 Liter im Wassertank.|Lösung anzeigen|Lösung verbergen}}
{{Lösung versteckt|Es befinden sich nach 9 min 2 Liter im Wassertank.|Lösung anzeigen|Lösung verbergen}}


{{Lösung versteckt|
{{Lösung versteckt|1=
1=Im Intervall [0;3] beträgt der Zufluss <math>2\frac{l}{min}</math>. In diesen 3 Minuten fließen <math>2 \frac{l}{min} \cdot 3\ min = 6 l </math> in den Tank. 6 ist die Maßzahl des Flächeninhalts A1. Im Intervall [3;5] beträgt die mittlere Zuflussrate <math>1\frac{l}{min}</math>. In diesen 2 Minuten kommen <math>1 \frac{l}{min} \cdot 2\ min = 2 l </math> dazu. 2 ist die Maßzahl des Flächeninhalts A2. Im Intevall [5;9] ist die Durchflussrate negativ. Es fließen <math>1,5 \frac{l}{min} \cdot 4\ min = 6 l </math> ab. 6 ist die Maßzahl des Flächeninhalts A3. Man kann also die Gesamtänderung des Wasservolumens in einem Intervall [a;b] mit Flächeninhalten veranschaulichen, wenn man oberhalb der x-Achse liegende Flächen positiv und unterhalb der x-Achse liegenden Flächen negativ zählt. Dieser '''orientierte Flächeninhalt''' beträgt beim Wassertank:  
 
Im Intervall <math>[0;3]</math> beträgt der Zufluss <math>2\frac{l}{min}</math>. In diesen 3 Minuten fließen <math>2 \frac{l}{min} \cdot 3\ min = 6 l </math> in den Tank. 6 ist die Maßzahl des Flächeninhalts A1. Im Intervall <math>[3;5]</math> beträgt die mittlere Zuflussrate <math>1\frac{l}{min}</math>. In diesen 2 Minuten kommen <math>1 \frac{l}{min} \cdot 2\ min = 2 l </math> dazu. 2 ist die Maßzahl des Flächeninhalts A2. Im Intevall <math>[5;9]</math> ist die Durchflussrate negativ. Es fließen <math>1,5 \frac{l}{min} \cdot 4\ min = 6 l </math> ab. 6 ist die Maßzahl des Flächeninhalts A3. Man kann also die Gesamtänderung des Wasservolumens in einem Intervall <math>[a;b]</math> mit Flächeninhalten veranschaulichen, wenn man oberhalb der x-Achse liegende Flächen positiv und unterhalb der x-Achse liegenden Flächen negativ zählt. Dieser '''orientierte Flächeninhalt''' beträgt beim Wassertank:  


A1 + A2 - A3 = 2 Flächeneinheiten  
<math>A1 + A2 - A3 = 2 Flächeneinheiten (FE)</math>


und entspricht einer Volumenänderung von 2 l. Da der Tank zu Beginn leer war, befinden sich jetzt insgesamt 2 l im Tank.
und entspricht einer Volumenänderung von 2 l. Da der Tank zu Beginn leer war, befinden sich jetzt insgesamt 2 l im Tank.
|2=Lösungsweg anzeigen|3=Lösungweg verbergen}}
|2=Lösungsweg anzeigen|3=Lösungweg verbergen}}
|Merke|Farbe= #FF4500 }}


{{Box|Merke|Ist der Graph einer momentanen Änderungsrate aus gradlinigen Teilstücken zusammengesetzt, so kann man die '''Gesamtänderung''' der Größe (Wirkung) rekonstruieren, indem man den orientierten Flächeninhalt zwischen den Graphen der momentanen Änderungsrate und der x-Achse bestimmt. Den orientierten Flächeninhalt nennt man auch das bestimmte Integral.|Merke|Farbe= #9B30FF}}
 
|2=|3=}}
 
|Merke|Farbe= #FF0000 }}
 
 
{{Box|Merke|
 
{{Lösung versteckt|1=
 
Ist der Graph einer momentanen Änderungsrate aus gradlinigen Teilstücken zusammengesetzt, so kann man die '''Gesamtänderung''' der Größe (Wirkung) rekonstruieren, indem man den orientierten Flächeninhalt zwischen den Graphen der momentanen Änderungsrate und der x-Achse bestimmt. Den orientierten Flächeninhalt nennt man auch das bestimmte Integral.
 
|2=|3=}}
 
|Merke|Farbe= #FF0000 }}




{{Box|Aufgabe 1|
{{Box|Aufgabe 1|
{{Lösung versteckt|1=
Du erkennst, dass der orientierte Flächeninhalt nicht mit dem Wert des Flächeninhalt zwischen Graph und x-Achse übereinstimmt. Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.
Du erkennst, dass der orientierte Flächeninhalt nicht mit dem Wert des Flächeninhalt zwischen Graph und x-Achse übereinstimmt. Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.


{{LearningApp|app=1140264|width=100%|height=400px}}
{{LearningApp|app=1140264|width=100%|height=400px}}


|Arbeitsmethode|Farbe=}}
|2=|3=}}
 
|Arbeitsmethode|Farbe=#FFFF00}}
 


{{Box|Aufgabe 2|
{{Box|Aufgabe 2|
Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.


{{LearningApp|app=3978880|width=100%|height=400px}}
{{Lösung versteckt|1=


|Arbeitsmethode|Farbe=}}
Die folgenden Graphen zeigen die Geschwindigkeit verschiedener Körper. Ermittel jeweils die vom Startpunkt zurückgelegte Strecke in m nach 9 s. Du benötigst ein Zettel und ein Stift, um deine Rechnungen und Ergebnisse zu notieren.


a) [[Datei:1a Bild.png|alternativtext=Aufgabe 1 a)|mini|800px|center|Figur 1]]


{{Box|Aufgabe 3|
{{Lösung versteckt|1=
Die folgenden Graphen zeigen die Geschwindigkeit verschiedener Körper. Ermittel jeweils die zurückgelegte Strecke in m nach 9 s. Du benötigst ein Zettel und ein Stift, um deine Rechnungen und Ergebnisse zu notieren.
 
Fläche oberhalb der x-Achse: <math>16 FE</math>
Flächer unterhalb der x-Achse: <math>4 FE</math>
Integral/orientierter Flächeninhalt: <math>16 - 4 = 12 FE</math>
Der Körper hat eine Strecke von 12 m vom Startpunkt zurückgelegt.


a) [[Datei:1a Bild.png|alternativtext=Aufgabe 1 a)|mini|800px|center|Figur 1]]
Lösung|2=Lösung anzeigen|3=Lösung verbergen}}


{{Lösung versteckt|1=Lösung|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Lösungsweg|2=Lösungsweg anzeigen|3=Lösungweg verbergen}}


b) [[Datei:1b Bild.png|alternativtext=Aufgabe 1 b)|mini|800px|center|Figur 2]]
b) [[Datei:1b Bild.png|alternativtext=Aufgabe 1 b)|mini|800px|center|Figur 2]]


{{Lösung versteckt|1=Lösung|2=Lösung anzeigen|3=Lösung verbergen}}
 
{{Lösung versteckt|1=Lösungsweg|2=Lösungsweg anzeigen|3=Lösungweg verbergen}}
{{Lösung versteckt|1=
 
Fläche oberhalb der x-Achse: <math>20 FE</math>
Flächer unterhalb der x-Achse: <math>0 FE</math>
Integral/orientierter Flächeninhalt: <math>20 FE</math>
Der Körper hat eine Strecke von 20 m vom Startpunkt zurückgelegt.
 
Lösung|2=Lösung anzeigen|3=Lösung verbergen}}
 


c) [[Datei:1c Bild.png|alternativtext=Aufgabe 1 c)|mini|800px|center|Figur 3]]
c) [[Datei:1c Bild.png|alternativtext=Aufgabe 1 c)|mini|800px|center|Figur 3]]


{{Lösung versteckt|1=Lösung|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=
{{Lösung versteckt|1=Lösungsweg|2=Lösungsweg anzeigen|3=Lösungweg verbergen}}


Fläche oberhalb der x-Achse: <math>49,5 FE</math>
Flächer unterhalb der x-Achse: <math>5 FE</math>
Integral/orientierter Flächeninhalt: <math>44,5 FE</math>
Der Körper hat eine Strecke von 44,5 m vom Startpunkt zurückgelegt.
Lösung|2=Lösung anzeigen|3=Lösung verbergen}}
|2=|3=}}


|Arbeitsmethode|Farbe=#FFFF00}}
|Arbeitsmethode|Farbe=#FFFF00}}
Zeile 152: Zeile 230:


{{Box|1=Beachte|2=
{{Box|1=Beachte|2=
{{Lösung versteckt|1=


Betrachte folgendes Applet. Lasse dir mithilfe von diesem folgende Funktionen abbilden.
Betrachte folgendes Applet. Lasse dir mithilfe von diesem folgende Funktionen abbilden.


# f(x)=1
# <math>f(x)=1</math>
# f(x)=x
# <math>f(x)=x</math>
# f(x)=x^2
# <math>f(x)=x^2</math>
# f(x)=x^3 + 2x^2 + 2x - 1
# <math>f(x)=x^3 + x^2 - 1</math>


<ggb_applet id="eexgtxva" width="1000" height="800"></ggb_applet>
<ggb_applet id="eexgtxva" width="1000" height="800"></ggb_applet>
Zeile 164: Zeile 244:
Was fällt dir auf? Wo besteht der Zusammenhang zwischen der Funktion und seiner Stammfunktion? Wo sind charakteristische Punkte?
Was fällt dir auf? Wo besteht der Zusammenhang zwischen der Funktion und seiner Stammfunktion? Wo sind charakteristische Punkte?


|3=Merke|Farbe=#FFFF00}}
|2=|3=}}
 
|3=Merke|Farbe=#FF0000 }}
 
 
{{Box|1=Stammfunktion Definition|2=
 
{{Lösung versteckt|1=


Eine Funktion <math>F</math> heißt '''Stammfunktion ''' zu einer Funktion <math>f</math> auf einem Intervall <math>I</math>, wenn für alle <math>x</math> in <math>I</math> gilt:
<math>F'(x) = f(x)</math>.
Sind <math>F</math> und <math>G</math> Stammfunktionen von <math>f</math> auf einem Intervall <math>I</math>, dann gibt es eine Konstante <math>c</math>, sodass für alle <math>x</math> in <math>I</math> gilt:
<math>F(x) = G(x)+c</math>


{{Box|1=Merke|2=
|2=|3=}}


Eine Funktion F heißt '''Stammfunktion ''' zu einer Funktion f auf einem Intervall I, wenn für alle x in I gilt:
|3=Merke|Farbe=#FF0000}}
'''F'(x) = f(x)'''.
Sind F und G Stammfunktionen von f auf einem Intervall I, dann gibt es eine Konstante c, sodass für alle x in I gilt:
F(x) = G(x)+c


|Farbe=}}


{{Box|Aufgabe 3|


{{Box|Aufgabe 4|
{{Lösung versteckt|1=
Bearbeite die folgenden Aufgabe. Du benötigst einen Zettel und einen Stift, um deine Rechnungen und Ergebnisse festzuhalten.


a) {{LearningApp|app=3978812|width=100%|height=400px}}
Bearbeite die folgenden Aufgabe. Du benötigst einen Zettel und einen Stift, um deine Rechnungen und Ergebnisse festzuhalten


{{LearningApp|app=1689396|width=100%|height=400px}}


b) {{LearningApp|app=1689396|width=100%|height=400px}}
|2=|3=}}


|Arbeitsmethode|Farbe=#FFFF00}}
|Arbeitsmethode|Farbe=#FFFF00}}




{{Box|1=Aufgabe 5|2=
{{Box|1=Aufgabe 4|2=
Zeichne eine beliebige Stammfunktion zu folgenden Funktionen auf dem Intervall I=[-5;5]. Zeichne zunächst die Funktion und dann die Stammfunktion auf einen Zettel. Beschreibe dein Vorgehen für charakteristische Punkte (Nullstellen, Extrempunkte, etc.).
 
{{Lösung versteckt|1=
 
Skizziere eine beliebige Stammfunktion zu folgenden Funktionen auf dem Intervall I=[-5;5]. Zeichne zunächst die Funktion und dann die Stammfunktion auf einen Zettel. Beschreibe dein Vorgehen für charakteristische Punkte (Nullstellen, Extrempunkte, etc.).
 
a)[[Datei:Funktion g(x).png|mini|800px|center|<math>f(x)=x^(3)+2x^(2)-3</math>]]
 
{{Lösung versteckt|1=
 
[[Datei:Aufgabe 4a Lösung.png|mini|800px|center|<math>F(x)=(1)/(4)x^(4)+(2)/(3)x^(3)-3x</math>]]
 
|2=Lösung anzeigen|3=Lösung verbergen}}
 
b)[[Datei:Funktion f(x).png|mini|800px|center|<math>g(x)=x^(6)+3x^(4)-5x^(3)</math>]]
 
{{Lösung versteckt|1=
 
[[Datei:Aufgabe 4b Lösung.png|mini|800px|center|<math>G(x)=(1)/(7)x^(7)+(3)/(5)x^(5)-(5)/(4)x^(4)</math>]]


a)
|2=Lösung anzeigen|3=Lösung verbergen}}
b)
c)


|2=|3=}}


|3=Arbeitsmethode|Farbe=}}
|3=Arbeitsmethode|Farbe=#0000FF}}




{{Box|1=Satz: Bestimmung von Stammfunktionen|2=
{{Box|1=Satz: Bestimmung von Stammfunktionen|2=


Zur Funktion f mit <math>f(x)=x^r (r\neq-1)</math> ist F mit <math>F(x)=\frac{1}{r+1}x^(r+1)</math>
{{Lösung versteckt|1=


Zur Funktion <math>f</math> mit <math>f(x)=x^r (r \neq -1)</math> ist <math>F</math> mit <math>F(x)=frac{1}{r+1} \cdot x^(r+1)</math> eine Stammfunktion.
Zur Funktion <math>f</math> mit <math>f(x)=x^-1=frac{1}{x}</math> ist <math>F</math> mit <math>F(x)=\ln(|x|)</math> eine Stammfunktion.
Sind <math>G</math> und <math>H</math> Stammfunktionen von <math>g</math> und <math>h</math>, so gilt für die zusammengesetzten Funktionen:
* <math>f(x)=g(x)+h(x) → F(x)=G(x)+H(X)</math>
* <math>f(x)=c\cdot g(x) → F(x)=c\cdot G(x)</math>
* <math>f(x)=g(c\cdot x+d) → F(x)=frac{1}{c} \cdot G(c\cdot x+d)</math>


|3=Merke|Farbe=}}
|2=|3=}}


|3=Merke|Farbe=#FF0000 }}
{{Box|1=Aufgabe 5|2=


Satz: Stammfunktionen bestimmen (Buch S. 68)
{{Lösung versteckt|1=
Beispiel: Stammfunktion bestimmen


Aufgabe:
Ordne den Funktionen ihre passende Stammfunktion zu. Ermittel dabei die Stammfunktion auf einem Zettel und ordne anschließend richtig zu.
{{LearningApp|app=1141792|width=100%|height=400px}}


{{LearningApp|app=4942220|width=100%|height=400px}}
{{LearningApp|app=4942220|width=100%|height=400px}}
|2=|3=}}
|3=Arbeitsmethode|Farbe=#0000FF}}
{{Box|1=Aufgabe 6|2=
{{Lösung versteckt|1=
Die Funktion <math>f(t)=-t^2+6t</math> gibt die Wachstumsrate von Bakterien an, <math>t</math> in Stunden, <math>f(t)</math> in Hundert Bakterien (siehe Figur 1). Zu Beginn waren 200 Bakterien vorhanden.
* a) Wie lautet die Funktion <math>g(t)</math>, die die vorhandene Anzahl von Bakterien zum Zeitpunkt <math>t</math> angibt?
* b) Wie viele Bakterien existieren nach 4 Stunden und nach 6 Stunden?
[[Datei:Aufgabe 6.png|mini|600px|center|Figur 1]]
{{Lösung versteckt|1=
* a) <math>g(t) = 2+\int_{0}^{t} f(t)dt</math> <math>F(t)=-frac{1}{3}\cdot x^3+3x^2</math>
* b) <math>g(4) = frac{86}{3} \approx 28,7; 28,7 \cdot 100=28700 g(6) = 38; 38 \cdot 100=38000</math>
Nach 4 Stunden sind es ca. 28700 und nach 6 Stunden 38000 Bakterien.
|2=Lösung anzeigen|3=Lösung verbergen}}
|2=|3=}}
|3=Arbeitsmethode|Farbe=#0000FF}}
{{Box|1=Aufgabe 7|2=
{{Lösung versteckt|1=
Bei einem Sprint über 100m treten zwei Läufer gegeneinander an.
Läufer A sprintet mit der Geschwindigkeitsfunktion <math>v_a(t)=0,25t+10 \cdot (1-e^-t)</math>.
Läufer B sprintet mit der Geschwindigkeitsfunktion <math>v_b(t)=12 \cdot (1-e^-t)+r \cdot t^2</math>.
<math>t</math> ist jeweils die Zeit in Sekunden ab dem Start des Laufes und <math>v(t)</math> die Geschwindigkeit der
Läufer in Meter pro Sekunde.
* a) Geben sie die Funktionen an, die die zurückgelegte Strecke zum Zeitpunkt <math>t</math> angibt.
* b) Zeige, dass Läufer A ungefähr 9,8 Sekunden benötigt.
* c) Bestimme den Wert von c so, dass der Läufer nach 9,69 Sekunden ins Ziel kommt.
* d) Wie viel Meter sind die beiden Läufer nach 5 s von einander entfernt, wenn r dem in c) ermittelten Wert entspricht?
{{Lösung versteckt|1=
* a) <math>V_a(t)= frac{1}{8} \cdot t^2+10 \cdot (t+e^-t)</math> ; <math>V_b(t)=12 \cdot (t+e^-t)+frac{c}{3} \cdot t^3</math>
* b) <math>\int_{0}^{9,8} v_a(t) dt = 100 \Leftrightarrow V_a(9,8)-V_a(0)=frac{1}{8} \cdot 9,8^2+10 \cdot (9,8+e^-9,8) - frac{1}{8} \cdot 0^2+10 \cdot (0+e^-0) \approx 110,006-10 \approx 100</math>
* c) <math>\int_{0}^{9,69} v_b(t) dt=100 \Leftrightarrow V_b(9,69)-V_b(0)=12 \cdot (9,69+e^-9,69)+frac{c}{3} \cdot 9,69^3-12 \cdot (0+e^-0)+frac{c}{3} \cdot 0^3 \approx 116,28+303,28c-12 = 100 \Leftrightarrow c\approx -0,0141</math>
* d) <math> \int_{0}^{5} v_a(t) dt -\int_{0}^{5} v_b(t) dt = \int_{0}^{5} v_a(t)-v_b(t) dt = -4,3</math> --> Die Läufer sind 4,3 m voneinander entfernt.
|2=Lösung anzeigen|3=Lösung verbergen}}
|2=|3=}}
|3=Arbeitsmethode|Farbe=#00FF00}}
{{Box|1=Hauptsatz der Differenzial- und Integralrechnung|2=
{{Lösung versteckt|1=
Die Funktion <math>f</math> sei stetig auf dem Intervall <math>[a;b]</math>. Dann gilt:
<math> \int_{a}{b} f(x) dx = F(a) – F(b) </math> für eine beliebige Stammfunktion <math>F</math> von <math>f</math> auf <math>[a;b]</math>.
|2=|3=}}
|3=Merke|Farbe=#FF0000 }}
{{Box|1=Definition: Integral|2=
{{Lösung versteckt|1=
Die Funktion <math>f</math> sei auf dem Intervall <math>[a;b]</math> stetig und <math> A_n = f(z_1) \cdot \Delta x + f(z_2) \cdot \Delta x + … + f(z_n) \cdot \Delta x </math> sei eine beliebige Rechtecksumme zu <math>f</math> über dem Intervall <math>[a;b]</math>.
Dann heißt der Grenzwert <math> \textstyle \lim_{n \to \infty} \displaystyle A_n </math> Integral der Funktion <math>f</math> zwischen den Grenzen <math>a</math> und <math>b</math> .
Man schreibt dafür:
<math> \int_{a}{b} f(x) dx </math> (lies: Integral von <math>f(x)</math> von <math>a</math> bis <math>b</math>).
|2=|3=}}
|3=Merke|Farbe=#FF0000 }}




Aufgabe:
Bestimme eine Stammfunktion folgender Funktionen:


*a)
*b)


2 Textaufgaben:
<br />

Version vom 25. April 2020, 09:36 Uhr

Info

In diesem Kapitel kannst du die Idee und die Anwendung des Integrals wiederholen und durch gezielte Aufgaben üben und verbessern. Die Grundlage hierfür ist, dass du die Eigenschaften von Funktionen erkennst und untersuchen sowie ableiten kannst.

Du sollst hier für dich verinnerlichen, was überhaupt hinter dem Begriff des Integrals steckt und kannst darüber hinaus Grundlagen für die Anwendung mit Integralen wiederholen aber auch vertiefen.

Zum Einstieg findest du eine Herleitung des Integrals aus dem Kontext der Differentialrechnung. Dabei werden dir die zwei Oberbegriffe des Kapitels Änderungsrate und Änderungseffekt erläutert. Anschließend folgen einige Aufgaben zum Integral bei denen es besonders auf den Zusammenhang von Differential- und Integralrechnung ankommt. Die Aufgaben werden in drei unterschiedliche Schwierigkeitsstufen eingeteilt so dass du jederzeit die Möglichkeit hast auf deinem Leistungsstand zu arbeiten.

In Aufgaben, die orange gefärbt sind, kannst du Gelerntes wiederholen und vertiefen.

Aufgaben in blauer Farbe sind Aufgaben mittlerer Schwierigkeit. Und Aufgaben mit grüner Hinterlegung sind Knobelaufgaben.

Herleitung des Integrals

Definition: Integral

Die Funktion sei auf dem Intervall stetig und sei eine beliebige Rechtecksumme zu über dem Intervall .

Dann heißt der Grenzwert  Integral der Funktion zwischen den Grenzen und .

Man schreibt dafür:

(lies: Integral von von bis ).


Hauptsatz der Differenzial- und Integralrechnung

Die Funktion sei stetig auf dem Intervall . Dann gilt:

für eine beliebige Stammfunktion von auf .


Rechenregeln und Stammfunktionen bilden

Gelerntes Wiederholen und Vertiefen

Aufgaben mittlerer Schwierigkeit

Aufgabe

Der Boden eines 2km langen Kanals hat die Form einer Parabel (siehe Abbildung). Dabei entspricht eine Längeneinheit 1m in der Wirklichkeit.

Querschnitt des komplett gefüllten Kanals
  • a) Erstelle eine Funktion f, die den Verlauf des Kanalgrundes angibt.
  • b) Berechne den Inhalt der Querschnittsfläche A des Kanals [in ]. Nimm dabei an, dass die Funktion f mit den Grundverlauf des Kanals darstellt.
  • c) Wie viel Wasser [in m^3] befindet sich im Kanal, wenn er komplett gefüllt ist?
  • d) Schwer: Wie viel Prozent der maximalen Wassermenge befindet sich im Kanal, wenn er nur halb gefüllt ist?
Eine Parabel hat die Form Es gibt 3 unbekannte Variablen, also benötigst du 3 Punkte des Graphen z.B. P1(-4,4),P2(0,0) und P3(4,4). Damit stellst du 3 Gleichungen auf und kannst diese nach den einzelnen Variablen auflösen.

Es gibt 2 Möglichkeiten, um den Inhalt der Querschnittsfläche des Kanal zu berechnen.

  1. Du berechnest das Integral von der Funktion f mit den Grenzen -4 und 4. Weiter berechnest du den Flächeninhalt des Rechtecks (schraffiert, siehe nachfolgende Abbildung). Abschließend subtrahierst du die Fläche des Integrals (Rot) von der des Rechtecks.
  2. Du erstellst eine zweite Funktion , welche den Wasserstand im Kanal wiederspiegelt. Anschließend berechnest du das Integral von g-f mit den Grenzen -4 und 4.
Querschnitt des komplett gefüllten Kanals, die Fläche des Rechtecks schraffiert und die des Integrals in Rot
  • zu a)
  • zu b) A: Die Querschnittsfläche des Kanals
  • zu c) A: Es befinden sich Wasser im Kanal, wenn er komplett gefüllt ist.
  • zu d) A: Wenn der Kanal nur halb gefüllt ist, befinden sich ca. 35% der maximalen Wassermenge im Kanal.



Siehe auch

Knobelaufgaben

Aufgabe

Ein Technik-Unternehmen hat ein neues Smartphone auf den Markt gebracht. Nach 9 Monaten will das Unternehmen prüfen, wie lukrativ das neue Handy in den ersten 9 Monaten war. Der monatliche Gewinn, der durch das Smartphone eingespielt wurde, kann durch die folgende Funktion dargestellt werden:


Die x-Achse gibt die Anzahl der Monate an und die y-Achse den Gewinn in Millionen (€).

Gewinn, der durch das neue Smartphone erzielt wird
  • a) Berechne den Ertrag, den das Unternehmen in den ersten 2 Monaten durch das Smartphone einspielt hat.
  • b) Berechne den Ertrag nach den ersten 7 Monaten.
  • c) Berechne den Ertrag nach den kompletten 9 Monaten.
  • d) In welchem Zeitraum erbringt das Smartphone ausschließlich Gewinn für das Unternehmen? Wie viel wird in dem Zeitraum eingenommen?
  • e) Interpretiere die Ergebnisse aus den Aufgaben a), b), c) und überlege dir mögliche Begründungen für den erzielten Betrag. Sollte das Smartphone weiterhin produziert werden?
Es ist also die Fläche zwischen dem Graphen und der x-Achse für die jeweiligen Zeitabschnitte zu bestimmen. Beachte dabei, dass ein Integral auch negativ sein kann! Was würde es in diesem Fall bedeuten, wenn das Integral für einen bestimmten Abschnitt negativ ist?
Hier solltest du zunächst die Nullstellen der Funktion berechnen (beachte dabei, dass du die richtigen wählst, evtl. gibt es mehrere Nullstellen). Die x-Koordinaten der entsprechenden Nullstellen benötigst du als Grenzen für das zu berechnende Integral.

Hier sollst du dir Gedanken machen, ob einerseits deine Ergebnisse aus den vorherigen Aufgaben Sinn ergeben (solltest du natürlich nach jeder Aufgabe machen), und anschließend deine eigenen Begründungen der Ergebnisse festhalten. Zum Bespiel, könnte der anfängliche Verlust mit höheren Produktionskosten als Verkaufseinnahmen begründet werden (warum? plausible Begründung).

Zur Überlegung, ob es lukrativ ist, das Smartphone weiterhin zu produzieren, solltest du dir den Gewinn bzw. Verlust der gesamten 9 Monate anschauen und natürlich den Verlauf der Funktion, die die Einnahmen wiederspiegelt.
  • zu a)
  • zu b)
  • zu c)
  • zu d)
  • zu e) Das Smartphone sollte nicht weiter produziert werden, da durch die gegebene Funktion absehbar ist, dass es schon nach ca. 8 Monaten erneut Verluste für das Unternehmen einspielt.

Integral: Rekonstruieren von Größen

Beispiel

Ein zu Beginn leerer Wassertank wird durch dieselbe Leitung befüllt und entleert. In Figur ist die momentane Durchflussrate f der Leitung für das Intervall dargestellt.


Beispielaufgabe
Figur 1


Es stellt sich die Frage wie aus der gegebenen Durchflussrate das Gesamtwasservolumen bestimmt werden kann? Dass bedeutet, wie viel Liter Wasser befinden sich nach 9 min im Wassertank?

Es befinden sich nach 9 min 2 Liter im Wassertank.

Im Intervall beträgt der Zufluss . In diesen 3 Minuten fließen in den Tank. 6 ist die Maßzahl des Flächeninhalts A1. Im Intervall beträgt die mittlere Zuflussrate . In diesen 2 Minuten kommen dazu. 2 ist die Maßzahl des Flächeninhalts A2. Im Intevall ist die Durchflussrate negativ. Es fließen ab. 6 ist die Maßzahl des Flächeninhalts A3. Man kann also die Gesamtänderung des Wasservolumens in einem Intervall mit Flächeninhalten veranschaulichen, wenn man oberhalb der x-Achse liegende Flächen positiv und unterhalb der x-Achse liegenden Flächen negativ zählt. Dieser orientierte Flächeninhalt beträgt beim Wassertank:

und entspricht einer Volumenänderung von 2 l. Da der Tank zu Beginn leer war, befinden sich jetzt insgesamt 2 l im Tank.


Merke


Ist der Graph einer momentanen Änderungsrate aus gradlinigen Teilstücken zusammengesetzt, so kann man die Gesamtänderung der Größe (Wirkung) rekonstruieren, indem man den orientierten Flächeninhalt zwischen den Graphen der momentanen Änderungsrate und der x-Achse bestimmt. Den orientierten Flächeninhalt nennt man auch das bestimmte Integral.


Aufgabe 1


Du erkennst, dass der orientierte Flächeninhalt nicht mit dem Wert des Flächeninhalt zwischen Graph und x-Achse übereinstimmt. Bearbeite folgende Aufgabe und nutze Zettel und Stift, um deine Rechnungen festzuhalten.



Aufgabe 2


Die folgenden Graphen zeigen die Geschwindigkeit verschiedener Körper. Ermittel jeweils die vom Startpunkt zurückgelegte Strecke in m nach 9 s. Du benötigst ein Zettel und ein Stift, um deine Rechnungen und Ergebnisse zu notieren.

a)
Aufgabe 1 a)
Figur 1

Fläche oberhalb der x-Achse: Flächer unterhalb der x-Achse: Integral/orientierter Flächeninhalt: Der Körper hat eine Strecke von 12 m vom Startpunkt zurückgelegt.

Lösung


b)
Aufgabe 1 b)
Figur 2


Fläche oberhalb der x-Achse: Flächer unterhalb der x-Achse: Integral/orientierter Flächeninhalt: Der Körper hat eine Strecke von 20 m vom Startpunkt zurückgelegt.

Lösung


c)
Aufgabe 1 c)
Figur 3

Fläche oberhalb der x-Achse: Flächer unterhalb der x-Achse: Integral/orientierter Flächeninhalt: Der Körper hat eine Strecke von 44,5 m vom Startpunkt zurückgelegt.

Lösung


Beachte

Betrachte folgendes Applet. Lasse dir mithilfe von diesem folgende Funktionen abbilden.

GeoGebra
Was fällt dir auf? Wo besteht der Zusammenhang zwischen der Funktion und seiner Stammfunktion? Wo sind charakteristische Punkte?


Stammfunktion Definition

Eine Funktion heißt Stammfunktion zu einer Funktion auf einem Intervall , wenn für alle in gilt: . Sind und Stammfunktionen von auf einem Intervall , dann gibt es eine Konstante , sodass für alle in gilt:


Aufgabe 3


Bearbeite die folgenden Aufgabe. Du benötigst einen Zettel und einen Stift, um deine Rechnungen und Ergebnisse festzuhalten



Aufgabe 4

Skizziere eine beliebige Stammfunktion zu folgenden Funktionen auf dem Intervall I=[-5;5]. Zeichne zunächst die Funktion und dann die Stammfunktion auf einen Zettel. Beschreibe dein Vorgehen für charakteristische Punkte (Nullstellen, Extrempunkte, etc.).

a)
b)


Satz: Bestimmung von Stammfunktionen

Zur Funktion mit ist mit eine Stammfunktion. Zur Funktion mit ist mit eine Stammfunktion. Sind und Stammfunktionen von und , so gilt für die zusammengesetzten Funktionen:


Aufgabe 5

Ordne den Funktionen ihre passende Stammfunktion zu. Ermittel dabei die Stammfunktion auf einem Zettel und ordne anschließend richtig zu.



Aufgabe 6

Die Funktion gibt die Wachstumsrate von Bakterien an, in Stunden, in Hundert Bakterien (siehe Figur 1). Zu Beginn waren 200 Bakterien vorhanden.

  • a) Wie lautet die Funktion , die die vorhandene Anzahl von Bakterien zum Zeitpunkt angibt?
  • b) Wie viele Bakterien existieren nach 4 Stunden und nach 6 Stunden?
Figur 1
  • a)
  • b)
Nach 4 Stunden sind es ca. 28700 und nach 6 Stunden 38000 Bakterien.


Aufgabe 7

Bei einem Sprint über 100m treten zwei Läufer gegeneinander an. Läufer A sprintet mit der Geschwindigkeitsfunktion . Läufer B sprintet mit der Geschwindigkeitsfunktion . ist jeweils die Zeit in Sekunden ab dem Start des Laufes und die Geschwindigkeit der Läufer in Meter pro Sekunde.

  • a) Geben sie die Funktionen an, die die zurückgelegte Strecke zum Zeitpunkt angibt.
  • b) Zeige, dass Läufer A ungefähr 9,8 Sekunden benötigt.
  • c) Bestimme den Wert von c so, dass der Läufer nach 9,69 Sekunden ins Ziel kommt.
  • d) Wie viel Meter sind die beiden Läufer nach 5 s von einander entfernt, wenn r dem in c) ermittelten Wert entspricht?
  • a)  ;
  • b)
  • c)
  • d) --> Die Läufer sind 4,3 m voneinander entfernt.



Hauptsatz der Differenzial- und Integralrechnung

Die Funktion sei stetig auf dem Intervall . Dann gilt:

für eine beliebige Stammfunktion von auf .



Definition: Integral

Die Funktion sei auf dem Intervall stetig und sei eine beliebige Rechtecksumme zu über dem Intervall .

Dann heißt der Grenzwert  Integral der Funktion zwischen den Grenzen und .

Man schreibt dafür:

(lies: Integral von von bis ).