Digitale Werkzeuge in der Schule/Wie Funktionen funktionieren/Terme und Gleichungen
Wiederholung: Terme und Gleichungen
Lies dir die folgenden Infokästchen sorgfältig durch und nutze sie, wenn du bei späteren Aufgaben ins Stocken kommst.
Ein Term ist ein mathematischer Ausdruck, der Zahlen, Variablen, Symbole für mathematische Verknüpfungen (Plus, Minus, Mal, Geteilt) und Klammern enthalten kann.
Beispiele:
.
Eine Gleichung ist eine Aussage über die Gleichheit zweier Terme, die mit Hilfe des Gleichheitszeichens ("=") symbolisiert wird.
Gleichungen sind entweder wahr (5 = 5) oder falsch (5 = 6)
Beispiele:
.
Terme vereinfachen bedeutet, die Terme durch die dir bekannten Methoden wie Addieren, Subtrahieren, Multiplizieren, Ausmultiplizieren und Ausklammern zu verkürzen oder übersichtlicher darzustellen. Hier ein paar Beispiele.
Addieren:
Subtrahieren:
Multiplizieren:
Ausmultiplizieren:
Ausklammern:
.Bei einer Gleichung mit einer Variable, z.B. , ist vor allem derjenige x -Wert von Interesse, für den die Gleichung erfüllt, das heißt wahr, ist.
Der x-Wert, für den die Gleichung erfüllt ist, heißt Lösung der Gleichung.
"Wozu brauche ich das alles überhaupt?!". Gute Frage! Vielleicht, um eine Million Euro zu gewinnen...?
Wiederholung: Bruchrechnung
Beim Rechnen mit Termen und Gleichungen stößt man regelmäßig auf Brüche. Falls Du Dich damit noch ein wenig unsicher fühlst, schau Dir die folgenden Erklärungen an:
1. Zwei Brüche mit gleichem Nenner werden addiert, indem man ihre Zähler addiert.
2. Vorgehensweise für ungleichnamige Brüche:
Ungleichnamige Brüche sind Brüche, die unterschiedliche Nenner haben.
Diese Brüche mit verschiedenen Nennern addiert man, indem man die Brüche auf einen Nenner bringt. Hierzu muss mindestens einer der Brüche gekürzt oder erweitert werden. Oftmals müssen beide Brüche erweitert werden. Der neue, gemeinsame Nenner ist das kleinste gemeinsame Vielfache der alten Nenner. Anschließend kann wieder wie oben mit gleichen Nennern addiert werden.
Kürzen
Allgemein:
kürzen mit n:
Ein Beispiel:
kürzen mit 2:
Erweitern
Allgemein:
erweitern mit m:
Ein Beispiel:
erweitern mit 4:Brüche werden miteinander multipliziert, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert.
Terme durch Addieren und Subtrahieren zusammenfassen
Nutze das Distributivgesetz! Klammere die Variable aus und fasse den Term innerhalb der Klammer zusammen.
Beispiel: .Zu b) und c): Um die Brüche zu addieren oder subtrahieren, bringe sie auf einen Nenner.
Beispiel: .a)
b)
c)
Nutze das Kommutativgesetz (gilt für Addition) und sortiere den Term nach Variablen!
Beispiel: .
Beachte Du kannst auch Subtraktionen als Addition umschreiben und so das Kommutativgesetz anweden.
Beispiel:a)
b)
c)
Gleiche Variablen mit unterschiedlichem Exponenten (z.B. und ) dürfen bei der Addition nicht zusammengefasst werden!
Beispiel: .a)
b) , das fällt hier weg, da sind.
c)
Klammern in Termen auflösen
Terme durch Ausklammern in Produkte umformen
Terme und Gleichungen zur Beschreibung von Sachsituationen
Lineare Gleichungen lösen
Quadratische Gleichungen lösen
Lineare Gleichungssysteme lösen
Für das Lösen von Gleichungssystemen gibt es unterschiedliche Verfahren und Herangehensweisen. Die folgenden Aufgaben können alle mithilfe von zwei Verfahren gelöst werden:
- Entscheide, welche Unbekannte du eliminieren willst
- Überlege, wie du die Gleichungen addieren musst, damit die Unbekannte weg fällt
- Berechne die Unbekannten
- Eine Gleichung nach einer Variable auflösen
- Den Term für diese Variable in die andere Gleichung einsetzen
- Gleichung nach der Variablen auflösen
- Die Lösung in die umgeformte Gleichung aus Schritt 1 einsetzen und so die andere Variable berechnen
Lineare Gleichungssysteme zum Lösen von Textaufgaben nutzen
Löse die folgenden Aufgaben in deinem Heft.