Digitale Werkzeuge in der Schule/Kleine Lernstandserhebung zur Doppeljahrgangsstufe 5/6/Brüche

Aus ZUM Projektwiki
Info

In diesem Lernpfadkapitel <Brüche und Bruchrechnung> kannst du wiederholen, was Brüche sind und wie du mit ihnen rechnest. Du findest Inhalte dazu, was Brüche sind, wie du sie der Größe nach ordnest, wie du sie kürzen und erweitern kannst und wie man sie addiert (+) und subtrahiert (-).

Für die Bearbeitung dieses Kapitels benötigst du das Arbeitsblatt zu den Brüchen und einen Stift.

Bei den Aufgaben unterscheiden wir folgende Typen:

  • In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
  • Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
  • Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!

Brüche und Anteile

Icon-Pinnnadel.svg
Merksatz: Brüche als Anteil eines Ganzen

Brüche sind Teile eines Ganzen. Der Nenner gibt an, in wie viele gleich große Teile das Ganze aufgeteilt wurde. Der Zähler gibt an, um wie viele Teile des Ganzen es geht. Man spricht: "Zwei Drittel".

Bildschirmfoto 2024-05-04 um 12.09.08.png

Der ganze Kreis wurde in 3 gleich große Teile aufgeteilt. 2 Teile des Ganzen sind rot markiert.

Bildschirmfoto 2024-05-04 um 13.28.23.png


(*)Aufgabe: 1: Brüche und Anteile zuordnen

Ordne die Brüche den passenden Darstellungen zu.


(*)Aufgabe: 2: Brüche benennen

Notiere auf deinem Arbeitsblatt: Benenne die einzelnen Brüche.

Beispiel: ein Viertel

a) b) c) d)

a) Ein Achtel b) Zwei Sechstel c) Ein Drittel d) Ein Sechstel


(*)Aufgabe: 3: Anteile benennen

Notiere auf deinem Arbeitsblatt: Gib die jeweiligen Anteile an.

a) Fünf Kinder einer Klasse mit 28 Schülerinnen und Schülern sind muslimisch.

b) Am Wandertag hat die Klasse bei der Rast schon 4km von 9km zurückgelegt.

c) Von 27 Schülerinnen und Schülern in der Klasse haben 5 die Hausaufgaben nicht gemacht.

d) Mathe ist das Lieblingsfach bei 11 von 24 Schülerinnen und Schülern.

a) b) c) d)

Bruchteile von Größen

Icon-Pinnnadel.svg
Merksatz: Bruchteile von Größen

Der Bruchteil einer Größe beschreibt einen bestimmten Anteil von einer Größe wie Meter, Kilogramm oder Euro.

Um einen Bruchteil einer Größe zu berechnen, musst du

1. durch den Nenner teilen

2. mit dem Zähler multiplizieren.

Manchmal musst du auch zuerst in eine kleinere Einheit umrechnen, also beispielsweise Meter in Zentimeter oder Stunden in Minuten umwandeln.


Beispiel: Bruchteile von Größen

Bestimme von 16 Bananen.

, also sind 4 Bananen von 16 Bananen.

, also sind 12 Bananen von 16 Bananen.

Wir unterteilen also die 16 Bananen in 4-er-Päckchen und nehmen dann 3 dieser 4-er-Päckchen.

Bildschirmfoto 2024-05-23 um 14.02.29.png

Probiere es doch gleich mal aus!


Aufgabe 4: Bruchteile von Größen bestimmen

Notiere auf deinem Arbeitsblatt:

Berechne die Anteile. Wandle, wenn nötig, vorher in eine kleinere Einheit um.

a) von 56 cm b) von 54 min c) von 1€

d) Maja hat drei Viertel ihrer 28 km langen Radstrecke zurückgelegt. Berechne, wie weit sie schon gefahren ist.

e) Cem braucht zum Backen von einem Kilogramm Butter. Berechne, wie viel Gramm er abwiegen muss.

Denk daran, dass 1€ = 100 Cent, 1kg = 1000g und 1km = 1000m entspricht.
a) 16 cm b) 24 min c) 40 Cent d) 21 km e) 375 g

Brüche erweitern und kürzen

Merksatz: Brüche erweitern und kürzen

So erweiterst du einen Bruch: Multipliziere Zähler und Nenner mit der gleichen Zahl.

So kürzt du einen Bruch: Teile den Zähler und Nenner durch die gleiche Zahl ungleich 0.

Der Wert des Bruchs bleibt dabei gleich.


Beispiel: Brüche erweitern und kürzen

Darstellung kürzen erweitern.jpg


GeoGebra

Probiere es doch gleich mal aus!


Aufgabe 6: Kästchen erweitern

Notiere auf deinem Arbeitsblatt:

Gib an, wie die Anteile der Kästchen als Bruch aussehen und mit welcher Zahl erweitert wurde.

a)
1-2 zu 2-4.jpg
b)
1-2zu3-6.jpg
c)
1-3zu4-12.jpg
d)
2-3zu12-18.jpg

a)

Es wurde mit erweitert.

b)

Es wurde mit erweitert.

c)

Es wurde mit erweitert.

d)

Es wurde mit erweitert.


Aufgabe 7: Kästchen kürzen

Notiere auf deinem Arbeitsblatt:

Gib an, wie die Anteile der Kästchen als Bruch aussehen und mit welcher Zahl gekürzt wurde.

a)
2-4 zu 1-2.jpg
b)
4-12zu1-3.jpg
c)
5-5zu1-1.jpg
d)
10-25zu2-5.jpg

a)

Es wurde mit gekürzt.

b)

Es wurde mit gekürzt.

c)

Es wurde mit gekürzt.

d)

Es wurde mit gekürzt.


Aufgabe 8: Brüche erweitern und kürzen

Ordne zu, womit hier gekürzt oder erweitert wurde. Wenn du fertig bist, klicke auf das Icon unten rechts, um deine Lösung zu überprüfen.



Aufgabe 9: Brüche ergänzen

Gib auf deinem Arbeitsblatt die fehlenden Zahlen an.

a) b) c) d)

e) f) g) h)


Denk daran, dass beim Erweitern/Kürzen der Zähler und der Nenner immer mit der gleichen Zahl multipliziert ()/dividiert (:) wird.
Mit welcher Zahl wurde der Zähler multipliziert (oder dividiert)? Multipliziere (oder dividiere)den Nenner mit der gleichen Zahl um auf die Lösung zu kommen.

a) 30 b) 25 c) 21 d) 77

e) 3 f) 7 g) 9 h) 11

Brüche vergleichen

Merksatz: Brüche vergleichen
Am einfachsten lassen sich Brüche mit gleichnamigen Nennern vergleichen.


Schreibweise
Wenn eine Zahl größer ist, so benutzt man das ("Größer-") " > " und, wenn eine Zahl kleiner ist, so benutzt man das ("Kleiner-") " < " Zeichen.


Aufgabe 10: Brüche vergleichen 1

Setze <, > oder = ein.



Aufgabe 11: Brüche vergleichen 2

Ordne die Brüche der Größe nach.

< < < < < < < < <


Aufgabe 12: Brüche vergleichen Lernspiel

Hier ein kleines Lernspiel.

Brüche addieren und subtrahieren

Merksatz: Brüche addieren und subtrahieren

Wenn man Brüche mit gemeinsamen Nenner miteinander addieren oder subtrahieren möchte, muss man die Zähler addieren oder subtrahieren. Sind die Nenner anders, musst du diese erweitern oder kürzen, um sie auf den gemeinsamen Nenner zu bringen.

'Tipp: Bei gemischten Zahlen, wie zum Beispiel wird diese als Bruch umgewandelt, also wäre dies dann für die Berechnung.


Beispiel: Brüche addieren

Die Aufgabe ist: Berechne

1. Such dir ein gemeinsames Vielfaches.
Schritt1BruchAddieren.png

Ein gemeinsames Vielfaches der Nenner und ist beispielsweise . Das ist auch das kleinste gemeinsame Vielfache.



2. Erweitere die Brüche auf einen gemeinsamen Nenner, z.B. auf .
Schritt2.png



3. Rechne nun die Zähler der beiden Brüche zusammen (oder subtrahiere, indem der zweite Bruch vom ersten genommen wird). Der Nenner bleibt gleich.

Dadurch ergibt sich .

Mit Subtrahieren sieht dies genauso aus. Nur muss man die Zähler im letzten Schritt voneinander abziehen.


Aufgabe 13: Brüche addieren und subtrahieren

Notiere auf deinem Arbeitsblatt: Berechne das jeweilige Ergebnis. Fasse zusammen falls möglich.

a)

b)

c)

d)

Hier kannst du die beiden gemischten Zahlen in einen Bruch schreiben, bei dem der Zähler größer ist. Also wäre .

a)

b)

c)

d)


Aufgabe 14: Gemischte Brüche addieren

Bearbeite folgende Aufgabe und folge den Anweisungen. Sollte GeoGebra nicht laden und nur das Logo anzeigen, drücke die Taste F5 oder lade alternativ oben die Seite neu.

GeoGebra


Aufgabe 15: Mit Brüchen im Kontext rechnen

Vom Gartenland von Herrn Müller wird der Fläche mit Salat und mit Blumen bepflanzt.

Berechne und gib in einem Bruch an, wie groß die Fläche übrig wäre, die Herr Müller zum Pflanzen von Gurken übrig hat.

Herr Müller muss rechnen:

Die Gesamtfläche ist mit 1 angegeben, weil diese die Gartenfläche insgesamt darstellt.

Die Antwort lautet: Herr Müller hat noch der Gartenfläche für die Gurken übrig.


Checkout

Setze die Wörter an den passenden Stellen ein. Die Aufgabe lautet: "Stelle den Anteil grafisch dar." Was musst du dann tun? Erinnere dich: Unten im Bruch steht die Gesamtzahl der Kästchen. Man nennt diese Zahl auch Nenner. Oben steht die Anzahl der gefärbten Kästchen. Du zeichnest also zum Beispiel drei gleich große Kästchen. Davon malst du ein Kästchen farbig aus. Du kannst auch einen Kreis zeichnen. Teile den Kreis in drei gleich große Teile. Male davon einen Teil aus. 1-3.jpg Du kannst den Bruch vor dem Zeichen auch erweitern: Nun teilst du den Kreis in sechs gleich große Teile. Davon malst du zwei Teile farbig an. Du kannst den Bruch mit jeder anderen Zahl erweitern. 1-3 erweitert.jpg Beim Erweitern muss man Zähler und Nenner mit der gleichen Zahl multiplizieren. Beim Kürzen muss man Zähler und Nenner mit der gleichen Zahl dividiert.

Zum Addieren und Subtrahieren von Brüchen müssen die Nenner gleich sein. Dann addiert bzw. subtrahiert man die Zähler.