Info
In diesem Lernpfadkapitel <Brüche und Bruchrechnung> kannst du wiederholen, was Brüche sind und wie du mit ihnen rechnest. Du findest Inhalte dazu, was Brüche sind, wie du sie der Größe nach ordnest, wie du sie kürzen und erweitern kannst und wie man sie addiert (+) und subtrahiert (-).
Für die Bearbeitung dieses Kapitels benötigst du das Arbeitsblatt zu den Brüchen und einen Stift.
Bei den Aufgaben unterscheiden wir folgende Typen:
- In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
- Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
- Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Viel Erfolg!
Brüche und Anteile
Merksatz: Brüche als Anteil eines Ganzen
Brüche sind Teile eines Ganzen. Der Nenner gibt an, in wie viele gleich große Teile das Ganze aufgeteilt wurde. Der Zähler gibt an, um wie viele Teile des Ganzen es geht. Man spricht: "Zwei Drittel".
Der ganze Kreis wurde in 3 gleich große Teile aufgeteilt. 2 Teile des Ganzen sind rot markiert.
Aufgabe: 1: Brüche und Anteile zuordnen
Ordne die Brüche den passenden Darstellungen zu.
Aufgabe: 2: Brüche benennen
Aufgabe: 3: Anteile benennen
Bruchteile von Größen
Merksatz: Bruchteile von Größen
Der Bruchteil einer Größe beschreibt einen bestimmten Anteil von einer Größe wie Meter, Kilogramm oder Euro.
Um einen Bruchteil einer Größe zu berechnen, musst du
1. durch den Nenner teilen
2. mit dem Zähler multiplizieren.
Manchmal musst du auch zuerst in eine kleinere Einheit umrechnen, also beispielsweise Meter in Zentimeter oder Stunden in Minuten umwandeln.
Probiere es doch gleich mal aus!
Aufgabe 4: Bruchteile von Größen bestimmen
Notiere auf deinem Arbeitsblatt:
Berechne die Anteile. Wandle, wenn nötig, vorher in eine kleinere Einheit um.
a) von 56 cm
b) von 54 min
c) von 1€
d) von 65t
e) von 1 Tag
f) von 1km
g) Maja hat drei Viertel ihrer 28 km langen Radstrecke zurückgelegt. Berechne, wie weit sie schon gefahren ist.
h) Cem braucht zum Backen von einem Kilogramm Butter. Berechne, wie viel Gramm er abwiegen muss.
i) In einem Theatersaal sind der 630 Plätze besetzt. Berechne, wie viele Zuschauer im Saal sitzen.
Denk daran, dass 1€ = 100 Cent, 1 Tag = 24 Stunden und 1km = 1000 m entspricht.
a) 16 cm
b) 24 min
c) 40 Cent
d) 35 t
e) 8 Stunden
f) 625 m
g) 21 km
h) 375 g
i) 540 Zuschauer
Vom Bruch zum Ganzen
Aufgabe 5: Vom Bruch zum Ganzen
Notiere auf deinem Arbeitsblatt:
Berechne das Ganze.
a) 24 kg sind des Gewichtes. Berechne das Gesamtgewicht.
b) 120 km sind des Weges. Berechne die gesamte Weglänge.
c) 78 l sind des Tanks. Berechne, wie viel Liter in den vollen Tank passen.
d) 6 min sind der Pause. Berechne die gesamte Dauer der Pause.
Beispielrechnung zu Aufgabe a)
sind 24 kg,
sind 24 kg : 3 = 8 kg,
, also ein Ganzes, sind dann 8 kg
7 = 56 kg
a) 56 kg
b) 160 km
c) 108 l
d) 20 min
Brüche erweitern und kürzen
Merksatz: Brüche erweitern und kürzen
So erweiterst du einen Bruch:
Multipliziere Zähler und Nenner mit der gleichen Zahl.
So kürzt du einen Bruch:
Teile den Zähler und Nenner durch die gleiche Zahl ungleich 0.
Der Wert des Bruchs bleibt dabei gleich.
Beispiel: Brüche erweitern und kürzen
Probiere es doch gleich mal aus!
Aufgabe 6: Kästchen erweitern
Notiere auf deinem Arbeitsblatt:
Gib an, wie die Anteile der Kästchen als Bruch aussehen und mit welcher Zahl erweitert wurde.
a)
b)
c)
d)
a)
Es wurde mit erweitert.
b)
Es wurde mit erweitert.
c)
Es wurde mit erweitert.
d)
Es wurde mit
erweitert.
Aufgabe 7: Kästchen kürzen
Notiere auf deinem Arbeitsblatt:
Gib an, wie die Anteile der Kästchen als Bruch aussehen und mit welcher Zahl gekürzt wurde.
a)
b)
c)
d)
a)
Es wurde mit gekürzt.
b)
Es wurde mit gekürzt.
c)
Es wurde mit gekürzt.
d)
Es wurde mit
gekürzt.
Aufgabe 8: Brüche erweitern und kürzen
Ordne zu, womit hier gekürzt oder erweitert wurde. Wenn du fertig bist, klicke auf das Icon unten rechts, um deine Lösung zu überprüfen.
Aufgabe 9: Brüche ergänzen
Gib auf deinem Arbeitsblatt die fehlenden Zahlen an.
a)
b)
c)
d)
e)
f)
g)
h)
Denk daran, dass beim Erweitern/Kürzen der Zähler und der Nenner immer mit der gleichen Zahl multipliziert (
)/dividiert (:) wird.
Mit welcher Zahl wurde der Zähler multipliziert (oder dividiert)? Multipliziere (oder dividiere)den Nenner mit der gleichen Zahl um auf die Lösung zu kommen.
a) 30 b) 25 c) 21
d) 77
e) 3
f) 7
g) 9
h) 11
Brüche vergleichen
Merksatz: Brüche vergleichen
Am einfachsten lassen sich Brüche mit gleichnamigen Nennern vergleichen.
Schreibweise
Wenn eine Zahl größer ist, so benutzt man das ("Größer-") " > " und, wenn eine Zahl kleiner ist, so benutzt man das ("Kleiner-") " < " Zeichen.
Aufgabe 10: Brüche vergleichen 1
Aufgabe 11: Brüche vergleichen 2
Ordne die Brüche der Größe nach.
Aufgabe 12: Brüche vergleichen Lernspiel
Hier ein kleines Lernspiel.
Brüche addieren und subtrahieren
Merksatz: Brüche addieren und subtrahieren
Wenn man Brüche mit gemeinsamen Nenner miteinander addieren oder subtrahieren möchte, muss man die Zähler addieren oder subtrahieren. Sind die Nenner anders, musst du diese erweitern oder kürzen, um sie auf den gemeinsamen Nenner zu bringen.
'
Tipp: Bei gemischten Zahlen, wie zum Beispiel
wird diese als Bruch umgewandelt, also wäre dies dann
für die Berechnung.
Beispiel: Brüche addieren
Die Aufgabe ist: Berechne
1. Such dir ein gemeinsames Vielfaches.
Ein gemeinsames Vielfaches der Nenner und ist beispielsweise . Das ist auch das kleinste gemeinsame Vielfache.
2. Erweitere die Brüche auf einen gemeinsamen Nenner, z.B. auf
.
3. Rechne nun die Zähler der beiden Brüche zusammen (oder subtrahiere, indem der zweite Bruch vom ersten genommen wird). Der Nenner bleibt gleich.
Dadurch ergibt sich .
Mit Subtrahieren sieht dies genauso aus. Nur muss man die Zähler im letzten Schritt voneinander abziehen.
Aufgabe 13: Brüche addieren und subtrahieren
Notiere auf deinem Arbeitsblatt:
Berechne das jeweilige Ergebnis. Fasse zusammen falls möglich.
a)
b)
c)
d)
Hier kannst du die beiden gemischten Zahlen in einen Bruch schreiben, bei dem der Zähler größer ist. Also wäre
.
a)
b)
c)
d)
Aufgabe 14: Gemischte Brüche addieren
Bearbeite folgende Aufgabe und folge den Anweisungen. Sollte GeoGebra nicht laden und nur das Logo anzeigen, drücke die Taste F5 oder lade alternativ oben die Seite neu.
Aufgabe 15: Mit Brüchen im Kontext rechnen
Vom Gartenland von Herrn Müller wird der Fläche mit Salat und mit Blumen bepflanzt.
Berechne und gib in einem Bruch an, wie groß die Fläche übrig wäre, die Herr Müller zum Pflanzen von Gurken übrig hat.
Herr Müller muss rechnen:
Die Gesamtfläche ist mit 1 angegeben, weil diese die Gartenfläche insgesamt darstellt.
Die Antwort lautet: Herr Müller hat noch
der Gartenfläche für die Gurken übrig.
Checkout