In diesem Lernpfadkapitel <Brüche und Bruchrechnung> kannst du wiederholen, was Brüche sind und wie du mit ihnen rechnest. Du findest Inhalte dazu, was Brüche sind, wie du sie der Größe nach ordnest, wie du sie kürzen und erweitern kannst und wie man sie addiert (+) und subtrahiert (-).
Für die Bearbeitung dieses Kapitels benötigst du das Arbeitsblatt zu den Brüchen und einen Stift.
Bei den Aufgaben unterscheiden wir folgende Typen:
In Aufgaben, die orange gefärbt sind, kannst du grundlegende Kompetenzen wiederholen und vertiefen.
Aufgaben in pinker Farbe sind Aufgaben mittlerer Schwierigkeit.
Und Aufgaben mit lilanem Streifen sind Knobelaufgaben.
Brüche sind Teile eines Ganzen. Der Nenner gibt an, in wie viele gleich große Teile das Ganze aufgeteilt wurde. Der Zähler gibt an, um wie viele Teile des Ganzen es geht.
Der ganze Kreis wurde in 3 gleich große Teile aufgeteilt. 2 Teile des Ganzen sind rot markiert.
Aufgabe: 1: Brüche und Anteile zuordnen
Ordne die Brüche den passenden Darstellungen zu.
Aufgabe: 2: Brüche benennen
Notiere auf deinem Arbeitsblatt:
Benenne die einzelnen Brüche.
Am einfachsten lassen sich Brüche mit gleichnamigen Nennern vergleichen.
Schreibweise
Wenn eine Zahl größer ist, so benutzt man das ("Größer-") " > " und, wenn eine Zahl kleiner ist, so benutzt man das ("Kleiner-") " < " Zeichen.
Aufgabe 10: Brüche vergleichen 1
Setze <, > oder = ein.
Aufgabe 11: Brüche vergleichen 2
Ordne die Brüche der Größe nach.
<
<
<
<
<
<
<
<
<
Aufgabe 12: Brüche vergleichen Lernspiel
Hier ein kleines Lernspiel.
Brüche addieren und subtrahieren
Merksatz: Brüche addieren und subtrahieren
Wenn man Brüche mit gemeinsamen Nenner miteinander addieren oder subtrahieren möchte, muss man die Zähler addieren oder subtrahieren. Sind die Nenner anders, musst du diese erweitern oder kürzen, um sie auf den gemeinsamen Nenner zu bringen.
'Tipp: Bei gemischten Zahlen, wie zum Beispiel wird diese als Bruch umgewandelt, also wäre dies dann für die Berechnung.
Beispiel: Brüche addieren
Die Aufgabe ist: Berechne
1. Such dir ein gemeinsames Vielfaches.
Ein gemeinsames Vielfaches der Nenner und ist beispielsweise . Das ist auch das kleinste gemeinsame Vielfache.
2. Erweitere die Brüche auf einen gemeinsamen Nenner, z.B. auf .
3. Rechne nun die Zähler der beiden Brüche zusammen (oder subtrahiere, indem der zweite Bruch vom ersten genommen wird). Der Nenner bleibt gleich.
Dadurch ergibt sich .
Mit Subtrahieren sieht dies genauso aus. Nur muss man die Zähler im letzten Schritt voneinander abziehen.
Aufgabe 13: Brüche addieren und subtrahieren
Notiere auf deinem Arbeitsblatt:
Berechne das jeweilige Ergebnis. Fasse zusammen falls möglich.
Bearbeite folgende Aufgabe und folge den Anweisungen. Sollte GeoGebra nicht laden und nur das Logo anzeigen, drücke die Taste F5 oder lade alternativ oben die Seite neu.
Aufgabe 15: Mit Brüchen im Kontext rechnen
Vom Gartenland von Herrn Müller wird der Fläche mit Salat und mit Blumen bepflanzt.
Berechne und gib in einem Bruch an, wie groß die Fläche übrig wäre, die Herr Müller zum Pflanzen von Gurken übrig hat.
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.