Terme und Gleichungen
Dieses Kapitel des Lernpfades soll Dir helfen, dein Wissen über Terme und Gleichungen zu überprüfen und aufzufrischen.
Du kannst selbst auswählen, in welcher Reihenfolge du das Kapitel bearbeiten möchtest und welche Aufgaben für dich am geeignetsten sind.
Damit du etwas anspruchsvollere Aufgaben direkt erkennst, sind Aufgaben, die dich fordern mit einem Stern (*) und knifflige Knobelaufgaben mit zwei Sternen (**) gekennzeichnet.
Viel Spaß!
Wiederholung: Terme und Gleichungen
Lies dir die folgenden Infokästchen sorgfältig durch und nutze sie, wenn du bei späteren Aufgaben ins Stocken kommst.
Ein Term ist ein mathematischer Ausdruck, der
Zahlen,
Variablen,
Symbole für mathematische Verknüpfungen (Plus, Minus, Mal, Geteilt) und
Klammern enthalten kann.
Beispiele:
.
Eine Gleichung ist eine Aussage über die Gleichheit zweier Terme, die mit Hilfe des Gleichheitszeichens ("=") symbolisiert wird.
Gleichungen sind entweder wahr (5 = 5) oder falsch (5 = 6)
Beispiele:
.
Terme vereinfachen bedeutet, die Terme durch die dir bekannten Methoden wie Addieren, Subtrahieren, Multiplizieren, Ausmultiplizieren und Ausklammern zu verkürzen oder übersichtlicher darzustellen. Hier ein paar Beispiele.
Addieren:
Subtrahieren:
Multiplizieren:
Ausmultiplizieren:
Ausklammern:
.
Bei einer Gleichung mit einer Variable, z.B.
, ist vor allem derjenige x
-Wert von Interesse, für den die Gleichung erfüllt, das heißt wahr, ist.
Der x-Wert, für den die Gleichung erfüllt ist, heißt
Lösung der Gleichung.
"Wozu brauche ich das alles überhaupt?!". Gute Frage! Vielleicht, um eine Million Euro zu gewinnen...?
Wiederholung: Bruchrechnung
Beim Rechnen mit Termen und Gleichungen stößt man auch regelmäßig auf Brüche. Falls Du dich damit noch ein wenig unsicher fühlst, schau Dir folgenden Erklärungen an:
1. Zwei Brüche mit gleichem Nenner werden addiert, indem man ihre Zähler addiert.
2. Vorgehensweise für ungleiche Brüche:
Ungleiche Brüche sind Brüche, bei denen beide Nenner unterschiedliche Werte haben.
Diese Brüche mit verschiedenen Nennern addiert man, indem man die Brüche auf einen Nenner bringt.
Hierzu müssen die Brüche gekürzt oder erweitert werden. Anschließend kann wieder wie oben mit gleichen Nennern addiert werden.
Kürzen
Allgemein:
kürzen mit n:
Ein Beispiel:
kürzen mit 2:
Erweitern
Allgemein:
erweitern mit m:
Ein Beispiel:
erweitern mit 4:
Brüche werden miteinander multipliziert, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert.
Terme durch Addieren und Subtrahieren zusammenfassen
Aufgabe 1 - Terme mit einer Variablen
Fasse die Terme zusammen.
a)
b)
c)
Nutze das Distributivgesetz! Klammere die Variable aus und fasse den Term innerhalb der Klammer zusammen.
Beispiel: .
Zu b) und c): Um die Brüche zu addieren oder subtrahieren, bringe sie auf einen Nenner.
Beispiel: .
a)
b)
c)
Aufgabe 2 - Terme mit einer Variablen und Konstanten
Fasse die Terme zusammen.
a)
b)
c)*
Nutze das Kommutativgesetz (gilt für Addition) und sortiere den Term nach der Variable!
Beispiel: .
Beachte: Du kannst auch Subtraktionen als Addition umschreiben und so das Kommutativgesetz anweden.
Beispiel:
Fasse jeweils die Werte mit gleicher Variable zusammen.
Beispiel : .
Kürze zunächst den Bruch und fasse dann zusammen.
a)
b)
c)
Aufgabe 3 - Terme mit zwei Variablen
Fasse die Terme zusammen
a)
b)
c)*
Nutze das Kommutativgesetz (gilt für Addition) und sortiere den Term nach Variablen!
Beispiel: .
Beachte Du kannst auch Subtraktionen als Addition umschreiben und so das Kommutativgesetz anweden.
Beispiel:
Kürze zunächst den Bruch und fasse anschließend zusammen.
a)
b)
c)
Aufgabe 4 - Terme mit Variablen und Exponenten
a)
b)
c)*
Gleiche Variablen mit unterschiedlichem Exponenten (z.B. und ) dürfen bei der Addition nicht zusammengefasst werden!
Beispiel: .
Kürze zunächst und fasse dann zusammen.
Klammern in Termen auflösen
Aufgabe 6 - Terme mit konstanten Faktoren
Löse die Klammern auf.
a)
b)
c)
Multipliziere den Faktor außerhalb der Klammer mit jedem Summanden in der Klammer. Die Vorzeichen der Ergebnisse werden übernommen. Bei einer Subtraktion wird entsprechend gleich gerechnet.
Beispiel: . Dieser Tipp geht auf das Distributivgesetz zurück.
zu b): Ob in dem Produkt erst die Klammer oder erst der konstante Faktor steht, ist egal. Es würde in beiden Fällen das gleiche Ergebnis herauskommen. Dies geht auf das Kommuntativgesetz der Multiplikation zurück.
a)
b)
c)
Aufgabe 7 - Terme mit variablen Faktoren
a)
b)
c)
Auch wenn außerhalb der Klammer eine Variable steht, ändert sich das Vorgehen nicht.
Achte auf die unterschiedlichen Variablen.
a)
b)
c)
{{{2}}}
Aufgabe 8 - Terme mit quadratischen Klammern
Löse die Klammern auf.
a)
b)
c)
Du kannst hier die binomischen Formeln anwenden.
und
Statt die binomischen Formeln anzuwenden, kannst du die Klammer auch per Hand ausmultiplizieren. Der Exponent
bedeutet, dass die Klammer mit sich selbst multipliziert werden soll.
Beispiel: .
Beim Multiplizieren von zwei Klammern, muss jeder Summand mit jedem Summanden multipliziert werden.
Beispiel: . Diese Regel geht auf die doppelte Anwendung des Distributivgesetzes zurück.
a)
b)
c)
Terme durch Ausklammern in Produkte umformen
Aufgabe 10 - Ausklammern
Klammere möglichst viel aus.
a)
b)
c)
d)
e)
f)
Bestimme den ggT aller Summanden. Er wird vor die Klammer gesetzt. Der größte gemeinsame Teiler ist die größte Die Summanden in der Klammer sind jeweils das, was beim Teilen durch den ggT (Weglassen) übrigbleibt.
Dieselbe Zahl:
"Beispiel" Bei 3x+3y soll ausgeklammert werden. 3x und 3y haben die 3 gemeinsam. Also können wir sie ausklammern:
.
Nicht dieselbe Zahl, aber die Zahlen haben einen gemeinsamen Teiler:
"Beispiel" Bei 12x+18y soll ausgeklammert werden. 12 und 18 sind in der 6er-Reihe. Der ggT von 12 und 18 ist 6. Also klammern wir die 6 aus:
Gemeinsamer ggT der Zahlen und mindestens eine gemeinsame Variable:
"Beispiel" Bei 21x+35xy soll ausgeklammert werden. Die 21 und die 35 sind beide in der 7er-Reihe. Außerdem kommt die Variable x bei beiden Summanden vor. Also klammern wir das 7x aus:
.
.
.
.
.
.
a) .
b) .
c) .
d) .
e) .
f)
Terme und Gleichungen zur Beschreibung von Sachsituationen
Aufgabe 11
Mein Vater, meine Mutter und ich sind zusammen 100 Jahre alt. Mein Vater ist 3 Mal so alt wie ich und meine Mutter ist 5 Jahre jünger als mein Vater. Wie alt bin ich, mein Vater und meine Mutter?
Setze ein Alter als unbekannte Variable.
x=mein Alter
mein Alter: 15
Alter meiner Mutter: 40
Alter meines Vater: 45
Aufgabe 12
Finn schoss in der letzten Saison doppelt so viele Tore wie sein Mitspieler Jürgen. Herbert erzielte 5 Tore weniger als Finn. Alle drei schossen insgesamt 30 Tore.
Wie viele Tore erzielte jeder einzelne?
Setze von einem Spieler die Anzahl der Tore als unbekannte Variable.
Es ist egal von welchem Spieler man die Anzahl der Tore als Variable setzt.
x=Anzahl der Tore von Finn
Finn: 14 Tore
Jürgen: 7 Tore
Herbert: 9 Tore
Aufgabe 13
Ein Parallelogramm hat einen Umfang von 132 Längeneinheiten. Eine Seite ist 38 Längenheiten kürzer als die andere. Wie lang sind die Seiten des Parallelogramms?
Setze eine Länge als unbekannte Variable.
Ein Parallelogramm hat jeweils 2 gleich lange Seiten.
x=kürzere Seite
kürzere Seite: 14
längere Seite: 52
Lineare Gleichungen lösen
Was sind überhaupt lineare Gleichungen?
Eine lineare Gleichung ist eine Gleichung 1. Grades. Das heißt: Die Variable x hat als Exponenten höchstens die Zahl 1:
.
Ihre einfachste Form ist: , wobei und reelle Zahlen sind
und eine Variable.
Zur Wiederholung schaue dir doch diesen Lernpfad zu linearen Funktionen nochmal an.
Aufgabe 14 - Lineare Gleichungen lösen
Bringe die Teilterme mit einer Variablen und die ohne Variablen auf jeweils eine Seite.
Beispiel:
Quadratische Gleichungen lösen
Aufgabe 15
Löse mit Hilfe der pq-Formel die folgenden quadratischen Gleichungen.
a)
b)
c)
d)
e)
f)
g)
h)
Aufgabe 16
Löse mit Hilfe der Nullproduktregel die folgenden quadratischen Gleichungen.
a)
b)
c)
Ein Produkt aus zwei Faktoren ist genau dann 0, wenn mindestens einer der beiden Faktoren 0 ist.
Aufgabe 17
Löse mit Hilfe der quadratischen Ergänzung die folgenden quadratischen Gleichungen.
a)
b)
c)
d)
Teile die Gleichung erst durch 3.
Aufgabe 18*
Löse die folgenden quadratischen Gleichungen.
a)
b)
c)
d)
Lineare Gleichungssysteme lösen
Für das Lösen von Gleichungssystemen gibt es unterschiedliche Verfahren und Herangehensweisen. Die folgenden Aufgaben können alle mithilfe von zwei Verfahren gelöst werden:
- Entscheide, welche Unbekannte du eliminieren willst
- Überlege, wie du die Gleichungen addieren musst, damit die Unbekannte weg fällt
- Berechne die Unbekannten
Beispiele dafür findest Du hier:
https://www.mathebibel.de/additionsverfahren
- Eine Gleichung nach einer Variable auflösen
- Den Term für diese Variable in die andere Gleichung einsetzen
- Gleichung nach der Variablen auflösen
- Die Lösung in die umgeformte Gleichung aus Schritt 1 einsetzen und so die andere Variable berechnen
Beispiele dafür findest Du hier:
https://www.mathebibel.de/einsetzungsverfahren
Aufgabe 19
Löse das folgende Gleichungssystem in deinem Heft:
Du kannst zum Lösen das Additionsverfahren benutzen, um die Variable y zu eliminieren.
Addiere Gleichung I zu Gleichung II
Berechne die Lösung für II
Setze x = 2 in I ein
Lösung:
.
Lineare Gleichungssysteme zum Lösen von Textaufgaben nutzen
Löse die folgenden Aufgaben in deinem Heft.
Aufgabe 20*
In einer Jugendherberge gibt es 18 Zimmer, aufgeteilt in Vier- und Sechsbettzimmer. Insgesamt können 84 Jugendliche untergebracht werden. Wie viele Vier- bzw. Sechsbettzimmer gibt es?
Die Lösung kannst Du mithilfe eines Gleichungssystems für zwei Variablen (z.B. x und y) berechnen. Die Variablen stehen für die Anzahl der Vier- bzw. Sechsbettzimmer.
Eine Gleichung sollte 18, die andere 84 als Ergebnis haben.
Das zu lösende Gleichungssystem ist:
Additionsverfahren:
Addiere das (-4)-fache von I zu II.
Löse die Gleichung II.
Setze y in I ein.
Einsetzungsverfahren
Löse I nach x auf.
Setze die Gleichung für x in II ein
Setze y in I ein.
Es gibt 12 Vier- und 6 Sechsbettzimmer.
Aufgabe 21**
Drei Personen werden nach ihrem Vermögen gefragt. Der Erste und der Zweite besitzen
zusammen um 20 Denare (römische Währung) mehr als der Dritte; der Erste und der Dritte haben zusammen um
40 Denare mehr als der Zweite; und der Zweite und der Dritte haben zusammen um 30
Denare mehr als der Erste. Wie viel besitzt jeder der Drei? (nach Diophant, 3. Jh. n. Chr.)
Die Lösung kannst du mithilfe eines Gleichungssystems für drei Variablen (z.B. a, b und c) berechnen.
Wenn Person A 10€ mehr hat als Person B, gilt: A - B = 10€
Das zu lösende Gleichungssystem ist:
Addiere I + II und I + III.
Löse die Gleichungen II und III.
Setze a und b in I ein.
Der Erste hat 30, der Zweite 25 und der Dritte 35 Denare.