Hier entsteht ein Lernpfad für quadratische Funktionen
Wiederholung
Hier soll zunächst Dein Wissen über lineare Funktionen aufgefrischt werden.
Übungen "Lineare Funktion" zur Wiederholung
Aufgabe 1: Weißt du's noch?
Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein.
Applet Geogebra
Experimentiere mit dem Applet
Übung: Bearbeite die folgenden Fragen im Quiz.
Darstellungsformen der quadratischen Funktion
Merke
Es gibt drei Möglichkeiten eine Funktionsgleichung für die quadratische Funktion anzugeben.
Die Scheitelpunktform Die Normalform Die allgemeine Form
Allgemeine Aussagen
Merke
Den Graf quadratischer Funktionen bezeichnet man als Parabel.
Jede Parabel besitzt einen Scheitelpunkt. Dort wechselt der Graf seine Monotonie, von fallend in steigend oder umgekehrt.
Der Scheitelpunkt ist entweder der tiefste oder der höchste Punkt der Parabel.
Die x–Werte, die für eine Funktion erlaubt sind, nennt man den Definitionsbereich der Funktion. Für diese Werte kann man y – Werte berechnen bzw. als Graf darstellen.
Für quadratische Funktionen sind alle x – Werte erlaubt. Es gibt keine x – Werte die bei der Berechnung von y auf unberechenbare Ausdrücke führen. x nennt man die unabhängige Variable, die x – Achse bezeichnet man als Abszisse.
Die y – Werte, die ein Funktionsausdruck annehmen kann, bezeichnet man als Wertevorrat oder Wertebereich.
Die y-Werte nennt man die abhängige Variable, die y – Achse bezeichnet man als Ordinate.
Die Normalparabel
Die Normalparabel zeichnen und grundlegende Eigenschaften
Die Scheitelpunktform
Merke
Ist die quadratische Funktion in der Form angegeben, so spricht man von der Scheitelpunktform(wobei a ≠ 0). In dieser Darstellungsform kann man den Scheitelpunkt direkt ablesen. Er hat die Koordinaten .
Aufgabe:
Verwende nun die CAS-App. Untersuche den Einfluss der drei Parameter a, d und e in der Funktion . Wähle dafür die App "Graph". Erzeuge für die Parameter jeweils einen Schieberegler. Bewege die Schieberegler einzeln und notiere Deine Beobachtungen.
Arbeitsauftrag
In den folgenden Videos werden die Einflüsse der drei Parameter auch nochmals erklärt.
Die quadratische Funktion in der Form
Die quadratische Funktion in der Form
Übung: Ordne im Quiz den Abbildungen die jeweilige Funktionsgleichung zu.
Übung: Ordne die quadratischen Funktionen den entsprechenden Funktionsgraphen zu.
Die Normalform
Merke
Ist die quadratische Funktion in der Form angegeben, so spricht man von der Normalform.
Aussagen über das Aussehen des Grafen können nur sehr allgemein gehalten werden. Die Werte von p und q beeinflussen das Aussehen der Parabel.
Eigenschaften der Funktion
Definitionsbereich:
alle x ∈ R
Wertebereich:
y ∈ R, Menge der reellen Zahlen, die größer als die y–Koordinate des Scheitels sind
Scheitelpunkt:
wird von p und q beeinflusst, Berechnung erfolgt später
Monotonie:
bis zum Scheitel monoton fallend
ab dem Scheitel monoton steigend
Symmetrieachse:
eine Parallele zur y – Achse, die durch den Scheitelpunkt verläuft
Die allgemeine Form
Merke
Ist die quadratische Funktion in der Form angegeben, so spricht man von der allgemeinen Form.
Der Graph von f ist ebenfalls eine Parabel.
Die zugehörige Parabel schneidet die y-Achse bei c.
Begriffe
quadratisches Glied im Term
lineares Glied im Term
konstantes Glied im Term
Eigenschaften der Funktion
Definitionsbereich:
alle x ∈ R
Wertebereich:
y ∈ R, Menge der reellen Zahlen, die größer bzw. kleiner als die y–Koordinate des Scheitels sind
Scheitelpunkt:
Form der Parabel:
a=1 (verschobene) Normalparabel
nach oben geöffnet für a>0
nach unten geöffnet für a<0
gestreckt für
gestaucht für
Monotonie:
Für ist die Funktion ...
ab dem Scheitel monoton steigend
Symmetrieachse:
eine Parallele zur y – Achse, die durch den Scheitelpunkt verläuft
Anwendungsaufgaben
Zeichnen von Graphen anhand der Scheitelpunktform
Skizziere die angegebenen Funktionen als Graphen in dein Heft:
Schaue dir die Funktion bezüglich ihrer Parameter a,d und e genau an. Welchen Einfluss haben die Parameter? Mache dir dann klar, wie der Graph ungefähr aussehen muss.
Falls du nicht mehr ganz im Kopf hast, was die einzelnen Parameter machen, schaue dir die beiden Videos noch einmal an.
Aufgabe:
Die Bahn der beim Kieselsteinwurf geworfenen Steine hat die Form einer Parabel. Neles Wurf wird durch die Gleichung beschrieben; Stefans Wurf durch die Gleichung (x in Meter).
a) Wer von beiden wirft höher?
b) Wer von beiden wirft weiter?
Aufgabe:
Von einem Tunnelbogen sind folgende Messwerte (Punkte) bekannt: A(0/0), B(1/0,76) und C(2/1,44), wobei alle Angaben Meterangaben sind.
Erstelle eine beschriftete Skizze der Situation.
Stelle eine Funktionsgleichung auf, die den Tunnelbogen beschreibt.
Wie hoch und wie breit ist der Tunnel?
In welchem Bereich des Tunnels könnte ein 3,5 m hoher LKW fahren.
Aufgabe:
Zum Verpacken eines Fernsehgerätes wird ein Karton mit 60 cm Höhe und mit einem Volumen von 264 Litern benötigt.
Die Seitenlängen der Grundfläche unterscheiden sich um 25 cm. Wie lang sind diese?
Beginne mit der Anpassung der Einheiten.
Bestimme die Grundfläche.
a = 80 cm und b = 55 cm
Übung: Aufgaben im Lehrbuch (Buchner Klasse 9)
Bearbeite die folgenden Aufgaben im Heft. Die CAS-App ist erlaubt.
Seite 94 Nr. 7, 8 und 9
Cookies helfen uns bei der Bereitstellung von ZUM Projektwiki. Durch die Nutzung von ZUM Projektwiki erklärst du dich damit einverstanden, dass wir Cookies speichern.