Benutzer:Stoll-Gym10Erfurt/Mathematik9/Quadratische Funktionen

Aus ZUM Projektwiki

Hier entsteht ein Lernpfad für quadratische Funktionen

Einstieg: Ein Lernpfad von Elena Jedtke

Diesen Lernpfad solltest Du erst einmal nutzen, bis der eigene fertig gestellt ist.

Quadratische Funktionen https://unterrichten.zum.de/wiki/Quadratische_Funktionen_erkunden


Wiederholung
Hier soll zunächst Dein Wissen über lineare Funktionen aufgefrischt werden.

Übungen "Lineare Funktion" zur Wiederholung

Aufgabe 1: Weißt du's noch?

Beantworte die Fragen zu linearen Funktionen. Es können auch mehrere Antworten möglich sein.



Applet Geogebra
Experimentiere mit dem Applet
GeoGebra


Übung: Bearbeite die folgenden Fragen im Quiz.


Darstellungsformen der quadratischen Funktion

Merke
Es gibt drei Möglichkeiten eine Funktionsgleichung für die quadratische Funktion anzugeben.


Die Scheitelpunktform
Die Normalform
Die allgemeine Form

Allgemeine Aussagen

Merke

Den Graf quadratischer Funktionen bezeichnet man als Parabel. Jede Parabel besitzt einen Scheitelpunkt. Dort wechselt der Graf seine Monotonie, von fallend in steigend oder umgekehrt. Der Scheitelpunkt ist entweder der tiefste oder der höchste Punkt der Parabel.

Die x–Werte, die für eine Funktion erlaubt sind, nennt man den Definitionsbereich der Funktion. Für diese Werte kann man y – Werte berechnen bzw. als Graf darstellen.

Für quadratische Funktionen sind alle x – Werte erlaubt. Es gibt keine x – Werte die bei der Berechnung von y auf unberechenbare Ausdrücke führen. x nennt man die unabhängige Variable, die x – Achse bezeichnet man als Abszisse.

Die y – Werte, die ein Funktionsausdruck annehmen kann, bezeichnet man als Wertevorrat oder Wertebereich.

Die y-Werte nennt man die abhängige Variable, die y – Achse bezeichnet man als Ordinate.

Die Normalparabel

Die Normalparabel zeichnen und grundlegende Eigenschaften


Die Scheitelpunktform

Merke

Ist die quadratische Funktion in der Form  angegeben, so spricht man von der Scheitelpunktform(wobei a ≠ 0). In dieser Darstellungsform kann man den Scheitelpunkt direkt ablesen. Er hat die Koordinaten .


Aufgabe 1:

Verwende nun die CAS-App. Wähle in einem neuen Problem die App "Graph" und stelle die Funktion dar. Dafür musst Du drei Schieberegler erzeugen für a, d und e.


Arbeitsauftrag
Sieh Dir das folgende Video an.

Die quadratische Funktion in der Form



Die quadratische Funktion in der Form


Die Normalform

Die allgemeine Form

Anwendungsaufgaben